Research Article
BibTex RIS Cite

Uranium Potentiality of Coal Occurences in Dinar (Afyonkarahisar, western Turkey) region: Geologic Factors Controlling the Accumulation of the Uranium

Year 2022, , 1176 - 1183, 27.10.2022
https://doi.org/10.35414/akufemubid.1111015

Abstract

Random distribution of energy resources in the world, rapidly increasing energy prices, environmental problems such as global warming and climate change, the depletion of fossil fuels in the near future and their negative impact on the environment and human health, increasing dependence on foreign energy, limited energy resources of big consumer countries and being dependent on a small number of specific countries lead states to seek various sources of energy. The uranium fuel-based nuclear energy generation is an alternative energy source for Turkey. Proven uranium reserves in Turkey are 32.4 kt and exploration of sedimentary basins for uranium mineralization still continues. In this context, Dinar (Afyonkarahisar, western Turkey) coal occurences can attract attention for economic possibilities of uranium related with Plio-Miocene aged extensional tectonic regime. A total of 17 coal samples were collected for analyses from five boreholes at various depths. The uranium contents of studied coals are up to 1065 μg/g. The origin of the uranium in this basin are considered as a stratal epigenetic origin, which the uranium was introduced in the coal after coalification and consolidation of the enclosing sediments by ground water deriving uranium from hydrothermal sources or from unconformably overlying volcanic rocks. In addition, it can be highlighted that the higher contents of uranium occur in the upper parts of the stratigraphically highest lignite beds, which is compatible with other epigenetic lignite deposits.

References

  • ASTM International, 2012. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal: D3174-12.
  • ASTM International, 2013. Standard Practice for Preparing Coal Samples for Analysis: D2013/D2013M.
  • ASTM International, 2017. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke: D3173/D3173M-17a.
  • ASTM International, 2017. Standard Test Method for Volatile Matter in Analysis Sample of Coal and Coke: D3175-17.
  • Bechtel, A., Karayiğit, A.İ., Bulut, Y., Mastalerz, M., Sachsenhofer, R.F., 2016. Coal characteristics and biomarker investigations of Dombayova coals of Late Miocene-Pliocene age Afyonkarahisar-Turkey, Organic Geochemistry, 94, 52-67.
  • Chen, J., Chen, P., Yao, D., Huang, W., Tang, S., Wang, K., Lıu, W., Hu, Y., Li, Q., Wang, R., 2017. Geochemistry of uranium in Chinese coals and the emission inventory of coal-fired power plants in China, International Geology Review, 60(5-6), 621-637.
  • Cuney, M., Kyser, K., 2008. Recent and Not-So-Recent Developments in Uranium Deposits and Implications for Exploration, Mineralogical Association of Canada, Short Course Series, 39, 25-26.
  • Denson, N.M., 1959. Uranium in coal in the western United States, US Government Printing Office, Vol. 1055, 3-4.
  • Dill, H., 1987. Environmental and diagenetic analysis of lower permian epiclastic and pyroclastic fan deposits their role for coal formation and uranium metallogeny in the stockheim through (F.R.G.), Sedimentary Geology, 52, 1-26.
  • Douglas, G.B., Butt, C.R., Gray, D.J., 2011. Geology, geochemistry and mineralogy of the lignite-hosted Ambassador palaeochannel uranium and multi-element deposit, Gunbarrel Basin, Western Australia, Mineraleum Deposita, 46(7), 761-787.
  • Fayek, M., Horita, J., Ripley, E.M., 2011. The oxygen isotopic composition of uranium minerals: a review, Ore Geology Review, 41(1), 1-21.
  • Galloway, W. E., Hobday, D. K., 1996, Fluvial systems. In Terrigenous Clastic Depositional Systems. Springer, Berlin, Heidelberg 372-373.
  • Gentry, R.V., Christie, W.H., Smith, D.H., Emery, J.F., Reynolds, S.A., Walker, R., Cristy, S.S., Gentry, P.A. 1976. Radiohalos in coalified wood: new evidence relating to the time of uranium introduction and coalification, Science, 194(4262), 315-318.
  • Hazen, R.M., Ewing, R.C., Sverjensky, D.A., 2009. Evolution of uranium and thorium minerals, American Mineralogist, 94, 1293-1311.
  • Langmuir, D., 1978. Uranium solution–mineral equilibria at low temperatures with applications to sedimentary ore deposits, Geochimica et Cosmochima Acta, 42, 547–569.
  • Lézin, C., Andreu, B., Pellenard, P., Bouchez, J.L., Emmanuel, L., Faure, P., Landrein, P., 2013. Geochemical disturbance and paleoenvironmental changes during the early toarcian in NW Europe”, Chemical Geology, 341, 1–15.
  • Myers, K.J., Wignall, P.B., 1987. Understanding Jurassic organic-rich mud-rocks e new concepts using gamma ray spectrometry and palaeoecology: examples from the Kimmeridge clay of Dorset and the Jet rock of Yorkshire”, In: Leggett, J.K., Zuffa, G.G. (Eds.), Marine Clastic Sedimentology. Graham and Trotman, London, 1–45.
  • Nath, B.N., Bau, M., Rao, B.R., Rao, C.M., 1997. Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone, Geochemica et Cosmochima Acta, 61(12), 2375–2388.
  • Wignall, P.B., Twitchett, R.J., 1996. Oceanic anoxia and the end Permian mass extinction, Science, 272, 1155–1158.
  • Yan, D., Chen, D., Wang, Q., Wang, J., 2009. Geochemical changes across the ordoviciansilurian transition on the yangtze platform, south China, Science China Earth Sciences, 52(1), 38–54.
  • Yılmaz, Y., Genç, S.C., Gürer, O.F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, R., Elmas, A., 2000. When did the western Anatolian grabens begin to develop?” In: Bozkurt E., Winchester, J. A., Piper, J. D. A.(Eds), Tectonics and Magmatism in Turkey and the Surrounding Area, Geological Society of London Special Publications, 173, 353-384.
  • Zelinski, R.A., Meier, A.L., 1988. The association of uranium with organic matter in Holocene peat: An experimental leaching study, Applied Geochemistry, 631-643.

Dinar (Afyonkarahisar, Batı Türkiye) Bölgesindeki Kömür Oluşumlarının Uranyum Potansiyeli: Uranyum Birikimini Kontrol Eden Jeolojik Faktörler

Year 2022, , 1176 - 1183, 27.10.2022
https://doi.org/10.35414/akufemubid.1111015

Abstract

Dünyada enerji kaynaklarının rastgele dağılmış olması, yükselen enerji fiyatları, küresel ısınma ve iklim değişikliği gibi çevresel sorunlar, yakın gelecekte fosil yakıtların tükenecek olması, bu enerji kaynaklarının çevre ve insan sağlığı üzerindeki etkileri, yabancı kaynaklara ve az sayıda enerji zengini ülkeye bağımlılık sebebiyle ülkeler farklı enerji kaynaklarına yönelmiştir. Uranyumu yakıt olarak kullanan nükleer enerji üretimi Türkiye için alternatif bir kaynak olarak ele alınmaktadır. Türkiye’nin kanıtlanmış uranyum rezervi 32.4 kiloton olup, halen uranyum içerebilecek havzaların araştırılması devam etmektedir. Bu kapsamda, Pliyo-Miyosen genişlemeli rejim sonucu gelişen Dinar (Afyonkarahisar, Batı Anadolu) kömür oluşumları ekonomik açıdan önem arz edebilecek uranyum içerikleri bakımından ilgi çekebilmektedir. Çeşitli derinliklerden ve 5 sondaj kuyusundan toplam 17 adet kömür numunesi alınmıştır. Bu numunelerin uranyum içeriklerinin 1065 μg/g mertebelerine kadar çıktığı görülmüştür. Havzada mevcut olan uranyumun, kömürleşme süreci ve kömür tabakalarının üzerinin volkanoklastik sedimanlar tarafından örtülmesinden sonra, hidrotermal akışkanlar ile karışan yeraltı sularının etkisiyle katmanlı epijenetik köken modeline uygun şekilde oluştuğu düşünülmektedir. Ayrıca, yüksek uranyum içeriğinin, linyit damarlarının üst katmanlarında yoğunlaşması sebebiyle havza diğer epijenetik linyit oluşumları ile benzerlik göstermektedir.

References

  • ASTM International, 2012. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal: D3174-12.
  • ASTM International, 2013. Standard Practice for Preparing Coal Samples for Analysis: D2013/D2013M.
  • ASTM International, 2017. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke: D3173/D3173M-17a.
  • ASTM International, 2017. Standard Test Method for Volatile Matter in Analysis Sample of Coal and Coke: D3175-17.
  • Bechtel, A., Karayiğit, A.İ., Bulut, Y., Mastalerz, M., Sachsenhofer, R.F., 2016. Coal characteristics and biomarker investigations of Dombayova coals of Late Miocene-Pliocene age Afyonkarahisar-Turkey, Organic Geochemistry, 94, 52-67.
  • Chen, J., Chen, P., Yao, D., Huang, W., Tang, S., Wang, K., Lıu, W., Hu, Y., Li, Q., Wang, R., 2017. Geochemistry of uranium in Chinese coals and the emission inventory of coal-fired power plants in China, International Geology Review, 60(5-6), 621-637.
  • Cuney, M., Kyser, K., 2008. Recent and Not-So-Recent Developments in Uranium Deposits and Implications for Exploration, Mineralogical Association of Canada, Short Course Series, 39, 25-26.
  • Denson, N.M., 1959. Uranium in coal in the western United States, US Government Printing Office, Vol. 1055, 3-4.
  • Dill, H., 1987. Environmental and diagenetic analysis of lower permian epiclastic and pyroclastic fan deposits their role for coal formation and uranium metallogeny in the stockheim through (F.R.G.), Sedimentary Geology, 52, 1-26.
  • Douglas, G.B., Butt, C.R., Gray, D.J., 2011. Geology, geochemistry and mineralogy of the lignite-hosted Ambassador palaeochannel uranium and multi-element deposit, Gunbarrel Basin, Western Australia, Mineraleum Deposita, 46(7), 761-787.
  • Fayek, M., Horita, J., Ripley, E.M., 2011. The oxygen isotopic composition of uranium minerals: a review, Ore Geology Review, 41(1), 1-21.
  • Galloway, W. E., Hobday, D. K., 1996, Fluvial systems. In Terrigenous Clastic Depositional Systems. Springer, Berlin, Heidelberg 372-373.
  • Gentry, R.V., Christie, W.H., Smith, D.H., Emery, J.F., Reynolds, S.A., Walker, R., Cristy, S.S., Gentry, P.A. 1976. Radiohalos in coalified wood: new evidence relating to the time of uranium introduction and coalification, Science, 194(4262), 315-318.
  • Hazen, R.M., Ewing, R.C., Sverjensky, D.A., 2009. Evolution of uranium and thorium minerals, American Mineralogist, 94, 1293-1311.
  • Langmuir, D., 1978. Uranium solution–mineral equilibria at low temperatures with applications to sedimentary ore deposits, Geochimica et Cosmochima Acta, 42, 547–569.
  • Lézin, C., Andreu, B., Pellenard, P., Bouchez, J.L., Emmanuel, L., Faure, P., Landrein, P., 2013. Geochemical disturbance and paleoenvironmental changes during the early toarcian in NW Europe”, Chemical Geology, 341, 1–15.
  • Myers, K.J., Wignall, P.B., 1987. Understanding Jurassic organic-rich mud-rocks e new concepts using gamma ray spectrometry and palaeoecology: examples from the Kimmeridge clay of Dorset and the Jet rock of Yorkshire”, In: Leggett, J.K., Zuffa, G.G. (Eds.), Marine Clastic Sedimentology. Graham and Trotman, London, 1–45.
  • Nath, B.N., Bau, M., Rao, B.R., Rao, C.M., 1997. Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone, Geochemica et Cosmochima Acta, 61(12), 2375–2388.
  • Wignall, P.B., Twitchett, R.J., 1996. Oceanic anoxia and the end Permian mass extinction, Science, 272, 1155–1158.
  • Yan, D., Chen, D., Wang, Q., Wang, J., 2009. Geochemical changes across the ordoviciansilurian transition on the yangtze platform, south China, Science China Earth Sciences, 52(1), 38–54.
  • Yılmaz, Y., Genç, S.C., Gürer, O.F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, R., Elmas, A., 2000. When did the western Anatolian grabens begin to develop?” In: Bozkurt E., Winchester, J. A., Piper, J. D. A.(Eds), Tectonics and Magmatism in Turkey and the Surrounding Area, Geological Society of London Special Publications, 173, 353-384.
  • Zelinski, R.A., Meier, A.L., 1988. The association of uranium with organic matter in Holocene peat: An experimental leaching study, Applied Geochemistry, 631-643.
There are 22 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Articles
Authors

Anıl Soylu 0000-0002-8789-2245

Zeynep Doner 0000-0003-2928-3174

Ali Tugcan Unluer 0000-0003-0382-4059

Abdullah Fişne 0000-0001-7449-0573

Mustafa Kumral 0000-0001-7827-8721

Publication Date October 27, 2022
Submission Date April 29, 2022
Published in Issue Year 2022

Cite

APA Soylu, A., Doner, Z., Unluer, A. T., Fişne, A., et al. (2022). Uranium Potentiality of Coal Occurences in Dinar (Afyonkarahisar, western Turkey) region: Geologic Factors Controlling the Accumulation of the Uranium. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(5), 1176-1183. https://doi.org/10.35414/akufemubid.1111015
AMA Soylu A, Doner Z, Unluer AT, Fişne A, Kumral M. Uranium Potentiality of Coal Occurences in Dinar (Afyonkarahisar, western Turkey) region: Geologic Factors Controlling the Accumulation of the Uranium. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2022;22(5):1176-1183. doi:10.35414/akufemubid.1111015
Chicago Soylu, Anıl, Zeynep Doner, Ali Tugcan Unluer, Abdullah Fişne, and Mustafa Kumral. “Uranium Potentiality of Coal Occurences in Dinar (Afyonkarahisar, Western Turkey) Region: Geologic Factors Controlling the Accumulation of the Uranium”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 5 (October 2022): 1176-83. https://doi.org/10.35414/akufemubid.1111015.
EndNote Soylu A, Doner Z, Unluer AT, Fişne A, Kumral M (October 1, 2022) Uranium Potentiality of Coal Occurences in Dinar (Afyonkarahisar, western Turkey) region: Geologic Factors Controlling the Accumulation of the Uranium. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 5 1176–1183.
IEEE A. Soylu, Z. Doner, A. T. Unluer, A. Fişne, and M. Kumral, “Uranium Potentiality of Coal Occurences in Dinar (Afyonkarahisar, western Turkey) region: Geologic Factors Controlling the Accumulation of the Uranium”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 5, pp. 1176–1183, 2022, doi: 10.35414/akufemubid.1111015.
ISNAD Soylu, Anıl et al. “Uranium Potentiality of Coal Occurences in Dinar (Afyonkarahisar, Western Turkey) Region: Geologic Factors Controlling the Accumulation of the Uranium”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/5 (October 2022), 1176-1183. https://doi.org/10.35414/akufemubid.1111015.
JAMA Soylu A, Doner Z, Unluer AT, Fişne A, Kumral M. Uranium Potentiality of Coal Occurences in Dinar (Afyonkarahisar, western Turkey) region: Geologic Factors Controlling the Accumulation of the Uranium. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:1176–1183.
MLA Soylu, Anıl et al. “Uranium Potentiality of Coal Occurences in Dinar (Afyonkarahisar, Western Turkey) Region: Geologic Factors Controlling the Accumulation of the Uranium”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 5, 2022, pp. 1176-83, doi:10.35414/akufemubid.1111015.
Vancouver Soylu A, Doner Z, Unluer AT, Fişne A, Kumral M. Uranium Potentiality of Coal Occurences in Dinar (Afyonkarahisar, western Turkey) region: Geologic Factors Controlling the Accumulation of the Uranium. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(5):1176-83.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.