Research Article
BibTex RIS Cite

Geochemical Characteristics of the Pan-African Basement Rocks at Atud Area, Central Eastern Desert, Egypt

Year 2022, , 944 - 962, 31.08.2022
https://doi.org/10.35414/akufemubid.1111229

Abstract

This paper reports the geochemical characteristics of the Precambrian Pan-African basement rocks of the Atud area (Central Eastern Desert of Egypt) to clarify their geological setting, field relationships, and petrographic and geochemical characteristics to define their tectonic setting and petrogenesis. The Atud area is made up of serpertinites and their derivatives and metatuffs that intruded by metagabbro-diorite complex and later intruded by olivine gabbronorite rocks. The serpentinites, talc-carbonate, and calc-silicate rocks refer to be metamorphic peridotites. Their rare earth elements (REE) behavior is characterized by enrichment in LREE and flat HREE with positive Eu-anomaly. This suggests to the oceanic serpentinization in nature occurred with the plagioclase circulation/dissolution of the hydrothermal fluids. The metatuffs were mostly derived from basic to intermediate magmatic suites pointing to have highest K/Rb ratio. They are, therefore, similar to the metasediments of the oceanic island arc having tholeiitic to calc-alkaline affinities and negative Eu-anomalies, HREE-depleted, and LREE-enriched patterns. Moreover, their source rocks originated from a magma contaminated by components added to the mantle source along the subduction zone that is back to their negative Eu-, Sr-, and Zr- anomalies. The metagabbro-diorite complex rocks show calc-alkaline gabbro and gabbro/diorite and diorite and gabbro/diorite, respectively. They are comparable with the calc-alkaline basalt (CAB) occurred in island arc setting indicating clinopyroxene and amphibole fractionation for the metagabbros and diorites, respectively. On the other hand, the olivine gabbronorite rocks are low-K tholeiitic gabbroic rocks having enrichment in the LREE and flat HREE. In addition, their REE pattern show negative anomalies of P and Ti and positive anomalies of Eu, Pb, Sr, Th, and Zr. It concluded that the gabbronorite rocks display low-pressure fractionation of olivine and plagioclase.

References

  • Abdelnasser A., 2016. Genesis of the gold mineralization at Atud area, Central Eastern Desert of Egypt: Geological, ore mineralogical and geochemical approaches. ITU Academic Archive: Istanbul Technical University, 157.
  • Abdelnasser A., Kumral M., 2016. Mineral chemistry and geochemical behavior of hydrothermal alterations associated with mafic intrusive-related Au deposits at the Atud area, Central Eastern Desert, Egypt. Ore Geology Reviews, 77, 1-24.
  • Abdelnasser A., Kumral M., 2017. The nature of gold-bearing fluids in Atud gold deposit, Central Eastern Desert, Egypt. International Geology Review, 59, 1845-1860.
  • Abdelnasser A., Kumral M., Zoheir B., Karaman M., Weihed P., 2018. REE geochemical characteristics and satellite-based mapping of hydrothermal alteration in Atud gold deposit, Egypt. Journal of African Earth Sciences, 145, 317-330.
  • Abdelrahman A.M., Doig R., 1987. The Rb-Sr geochronological evolution of the Ras Gharib segment of the northern Nubian Shield. Journal of the Geological Society, 144, 577-586.
  • Bhatia M.R., 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 611-627.
  • Brown L.D., Reilinger R.E., Holdahl S.R., Balazs E.I., 1977. Postseismic crustal uplift near Anchorage, Alaska. Journal of Geophysical Research, 82, 3369-3378.
  • Bucher K., Frey M., 1994. Petrogenesis of metamorphic rocks. 6. baskı ve Winkler’ın revizyon edilmiş Springer-Verlag, New York, 318.
  • Caby R., Dostal J., Dupuy C., 1977. Upper Proterozoic volcanic graywackes from northwestern Hoggar (Algeria)—geology and geochemistry. Precambrian Research. 5, 283-297.
  • Coleman R., 1977. Ophiolites Springer-Verlag. New York, NY, 229.
  • Condi K.C., Macke J.E., Reimer T.O., 1970. Petrology and geochemistry of early Precambrian graywackes from the Fig Tree Group, South Africa. Geological Society of America Bulletin, 81, 2759-2776.
  • Cox K.G., Bell J.D., Pankhurst R.J., 1979. The Interpretation of Igneous Rocks: George Allen & Unwin, 450.
  • Debret B., Andreani M., Godard M., Nicollet C., Schwartz S., Lafay R., 2013. Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: A LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chemical Geology, 357, 117-133.
  • Deschamps F., Guillot S., Godard M., Chauvel C., Andreani M., Hattori K., 2010. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology. 269, 262-277.
  • Douville E., Charlou J., Oelkers E., Bienvenu P., Colon C.J., Donval J., Fouquet Y., Prieur D., Appriou P., 2002. The rainbow vent fluids (36 14′ N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology, 184, 37-48.
  • Drury S., Holt R., Van Clasteren P., Beckinsale R., 1983. Sm-Nd and Rb-Sr ages for Archaean rocks in western Karnataka, South India.
  • Floyd P., 1993. Geochemical discrimination and petrogenesis of alkalic basalt sequences in part of the Ankara melange, central Turkey. Journal of the Geological Society, 150, 541-550.
  • Floyd P., Leveridge B., 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144, 531-542.
  • Gabra S., 1986. Gold in Egypt: A commodity package, minerals, petroleum and groundwater assessment program: USAID project 363-0105. Geological Survey of Egypt.
  • Ghoneim M., 1989. Mineral chemistry of some gabbroic rocks of the central Eastern Desert, Egypt. Journal of African Earth Sciences (and the Middle East), 9, 289-295.
  • Harraz H.Z., 1999. Wall rock alteration, Atud gold mine, Eastern Desert, Egypt: processes and P T XCO2 conditions of metasomatism. Journal of African Earth Sciences, 28, 527-551.
  • Harraz H.Z., Ashmawy M., 1994. Structural and lithogeochemical constraints on the localization of gold deposits at the El Sid-Fawakhir gold mine area, Eastern Desert, Egypt. Egyptian Journal Geology, 38, 629-648.
  • Hashad A., 2015. Present status of geochronological data on the Egyptian basement complex. Evolution and mineralization of the Arabian-Nubian shield. 1, 31-46.
  • Hassanipak A., Ghazi A.M., Wampler J., 1996. Rare earth element characteristics and K-Ar ages of the Band Ziarat ophiolite complex, southeastern Iran. Canadian Journal of Earth Sciences, 33, 1534-1542.
  • Hawkesworth C., O'nions R., Pankhurst R., Hamilton P., Evensen N., 1977. A geochemical study of island-arc and back-arc tholeiites from the Scotia Sea. Earth and Planetary Science Letters, 36, 253-262.
  • Ikeda Y., 1990. CeN/SrN/SmN- A trace-element discriminant for basaltic rocks from different tectonomagmatic environments. Neues Jahrbuch Fur Mineralogie-Monatshefte. 145-158.
  • Irvine T., Baragar W., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8, 523-548.
  • Le Maitre R.W.B., Dudek P., Keller A., Lameyre J., Le Bas J., Sabine M., Schmid P., Sorensen R., Streckeisen H., Woolley A., 1989. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks: International Union of Geological Sciences.
  • McLennan S., Taylor S., McCulloch M., Maynard J., 1990. Geochemical and Nd Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015-2050.
  • Miyashiro A., 1978. Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology, 66, 91-104.
  • Miyashiro A., Shido F., 1975. Tholeiitic and calc-alkalic series in relation to the behaviors of titanium, vanadium, chromium, and nickel. American Journal of Science, 275, 265-277.
  • Paulick H., Bach W., Godard M., De Hoog J., Suhr G., Harvey J., 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15 20′ N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234, 179-210.
  • Pearce J.A., Cann J., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters. 19, 290-300.
  • Pearce J.A., Norry M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69, 33-47.
  • Roser B., Korsch R., 1986. Determination of tectonic setting of sandstone-mudstone suites using content and ratio. The Journal of Geology. 635-650.
  • Streckeisen A., 1976. To each plutonic rock its proper name. Earth-science reviews, 12, 1-33.
  • Sun S.-S., McDonough W., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313-345.
  • Van de Kamp P.C., 1968. Geochemistry and origin of metasediments in the Haliburton-Madoc area, southeastern Ontario. Canadian journal of earth sciences, 5, 1337-1372.
  • Van de Kamp P.C., Leake B.E., Senior A., 1976. The petrography and geochemistry of some Californian arkoses with application to identifying gneisses of metasedimentary origin. The Journal of Geology. 195-212.
  • Wilson M., 2007. Igneous petrogenesis a global tectonic approach: Springer Science & Business Media, 466.

Atud (Mısır) Bölgesi’nde Bulunan Pan-African Temel Kayaçlarının Jeokimyasal Karakteristikleri

Year 2022, , 944 - 962, 31.08.2022
https://doi.org/10.35414/akufemubid.1111229

Abstract

Bu çalışmada, Atud bölgesi’ndeki (Mısır'ın Orta Doğu Çölü) Prekambriyen Pan-Afrikan temel kayaçlarının jeolojik yerleşimlerini, jeokimyasal özelliklerini, saha ilişkilerini, tektonik yerleşimlerini ve petrojenezlerini belirlemek için petrografik ve jeokimyasal özellikleri ortaya konulmuştur. Atud Bölgesi’nde serpantinitler, bunların türevleri ve metatüfler, metagabro-diyorit kompleksi tarafından kesilmektedir. Metagabro-diyorit kompleksi ise olivin gabronoritik kayaçlar tarafından kesilmektedir. Serpantinitler, talk-karbonat ve kalk-silikat kayaçları metamorfik peridotitler olarak adlandırılmıştır. Nadir toprak elementleri (NTE) davranışları, HNTE ve pozitif Eu-anomalisi ile ANTE zenginleşmeleri ile karakterize edilir. Bu durum, hidrotermal akışkanların plajiyoklaz çözünmesi ve/veya sirkülasyonu ile doğada meydana gelen okyanus serpantinleşmesine işaret etmektedir. Metatüfler çoğunlukla en yüksek K/Rb oranına sahip olan bazik ile ortaç dereceli magma odalarından türetilmiştir. NTE paternleri, HNTE açısından zenginleşmiş, ANTE'den yoksun ve negatif Eu anomalilerine sahip genelde toleyitik ve kalk-alkalin kayaçlarla okyanus ada yayının metasedimentlerine benzemektedir. Ayrıca, dalma-batma zonu boyunca manto kaynağına eklenen bileşenler tarafından kirlenmiş bir magmadan kaynak kayaçlarının oluştuğunu ifade etmektedir, yani negatif Eu-, Sr- ve Zr- anomalileri göstermektedir. Metagabro-diyorit kompleksi kayaçlarının sırasıyla kalk-alkalin gabro ve gabro/diyorit ve diyorit ve gabro/diyorit olduğunu ortaya koymaktadır. Bu kayaçlar, sırasıyla metagabrolar ve diyoritler için klinopiroksen ve amfibol fraksiyonasyonuna işaret eden ada yayı ortamlarında meydana gelen kalk-alkali bazalt (CAB) ile karşılaştırılabilir. Öte yandan, olivin gabronorit kayaçları, K toleyitik magmatik afinitelere sahip gabroik kayaçlar olarak sınıflandırılır. NTE paternleri, HNTE ile zenginleşmeyi ve pozitif Eu-, Th-, Pb-, Sr- ve Zr-anomalileri ve plajiyoklaz ve olivin düşük basınçlı fraksiyonasyonunu ima eden negatif P- ve Ti-anomalileri ile ANTE açısından tüketilmeyi ortaya koymaktadır.

References

  • Abdelnasser A., 2016. Genesis of the gold mineralization at Atud area, Central Eastern Desert of Egypt: Geological, ore mineralogical and geochemical approaches. ITU Academic Archive: Istanbul Technical University, 157.
  • Abdelnasser A., Kumral M., 2016. Mineral chemistry and geochemical behavior of hydrothermal alterations associated with mafic intrusive-related Au deposits at the Atud area, Central Eastern Desert, Egypt. Ore Geology Reviews, 77, 1-24.
  • Abdelnasser A., Kumral M., 2017. The nature of gold-bearing fluids in Atud gold deposit, Central Eastern Desert, Egypt. International Geology Review, 59, 1845-1860.
  • Abdelnasser A., Kumral M., Zoheir B., Karaman M., Weihed P., 2018. REE geochemical characteristics and satellite-based mapping of hydrothermal alteration in Atud gold deposit, Egypt. Journal of African Earth Sciences, 145, 317-330.
  • Abdelrahman A.M., Doig R., 1987. The Rb-Sr geochronological evolution of the Ras Gharib segment of the northern Nubian Shield. Journal of the Geological Society, 144, 577-586.
  • Bhatia M.R., 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 611-627.
  • Brown L.D., Reilinger R.E., Holdahl S.R., Balazs E.I., 1977. Postseismic crustal uplift near Anchorage, Alaska. Journal of Geophysical Research, 82, 3369-3378.
  • Bucher K., Frey M., 1994. Petrogenesis of metamorphic rocks. 6. baskı ve Winkler’ın revizyon edilmiş Springer-Verlag, New York, 318.
  • Caby R., Dostal J., Dupuy C., 1977. Upper Proterozoic volcanic graywackes from northwestern Hoggar (Algeria)—geology and geochemistry. Precambrian Research. 5, 283-297.
  • Coleman R., 1977. Ophiolites Springer-Verlag. New York, NY, 229.
  • Condi K.C., Macke J.E., Reimer T.O., 1970. Petrology and geochemistry of early Precambrian graywackes from the Fig Tree Group, South Africa. Geological Society of America Bulletin, 81, 2759-2776.
  • Cox K.G., Bell J.D., Pankhurst R.J., 1979. The Interpretation of Igneous Rocks: George Allen & Unwin, 450.
  • Debret B., Andreani M., Godard M., Nicollet C., Schwartz S., Lafay R., 2013. Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: A LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chemical Geology, 357, 117-133.
  • Deschamps F., Guillot S., Godard M., Chauvel C., Andreani M., Hattori K., 2010. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology. 269, 262-277.
  • Douville E., Charlou J., Oelkers E., Bienvenu P., Colon C.J., Donval J., Fouquet Y., Prieur D., Appriou P., 2002. The rainbow vent fluids (36 14′ N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology, 184, 37-48.
  • Drury S., Holt R., Van Clasteren P., Beckinsale R., 1983. Sm-Nd and Rb-Sr ages for Archaean rocks in western Karnataka, South India.
  • Floyd P., 1993. Geochemical discrimination and petrogenesis of alkalic basalt sequences in part of the Ankara melange, central Turkey. Journal of the Geological Society, 150, 541-550.
  • Floyd P., Leveridge B., 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144, 531-542.
  • Gabra S., 1986. Gold in Egypt: A commodity package, minerals, petroleum and groundwater assessment program: USAID project 363-0105. Geological Survey of Egypt.
  • Ghoneim M., 1989. Mineral chemistry of some gabbroic rocks of the central Eastern Desert, Egypt. Journal of African Earth Sciences (and the Middle East), 9, 289-295.
  • Harraz H.Z., 1999. Wall rock alteration, Atud gold mine, Eastern Desert, Egypt: processes and P T XCO2 conditions of metasomatism. Journal of African Earth Sciences, 28, 527-551.
  • Harraz H.Z., Ashmawy M., 1994. Structural and lithogeochemical constraints on the localization of gold deposits at the El Sid-Fawakhir gold mine area, Eastern Desert, Egypt. Egyptian Journal Geology, 38, 629-648.
  • Hashad A., 2015. Present status of geochronological data on the Egyptian basement complex. Evolution and mineralization of the Arabian-Nubian shield. 1, 31-46.
  • Hassanipak A., Ghazi A.M., Wampler J., 1996. Rare earth element characteristics and K-Ar ages of the Band Ziarat ophiolite complex, southeastern Iran. Canadian Journal of Earth Sciences, 33, 1534-1542.
  • Hawkesworth C., O'nions R., Pankhurst R., Hamilton P., Evensen N., 1977. A geochemical study of island-arc and back-arc tholeiites from the Scotia Sea. Earth and Planetary Science Letters, 36, 253-262.
  • Ikeda Y., 1990. CeN/SrN/SmN- A trace-element discriminant for basaltic rocks from different tectonomagmatic environments. Neues Jahrbuch Fur Mineralogie-Monatshefte. 145-158.
  • Irvine T., Baragar W., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8, 523-548.
  • Le Maitre R.W.B., Dudek P., Keller A., Lameyre J., Le Bas J., Sabine M., Schmid P., Sorensen R., Streckeisen H., Woolley A., 1989. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks: International Union of Geological Sciences.
  • McLennan S., Taylor S., McCulloch M., Maynard J., 1990. Geochemical and Nd Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015-2050.
  • Miyashiro A., 1978. Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology, 66, 91-104.
  • Miyashiro A., Shido F., 1975. Tholeiitic and calc-alkalic series in relation to the behaviors of titanium, vanadium, chromium, and nickel. American Journal of Science, 275, 265-277.
  • Paulick H., Bach W., Godard M., De Hoog J., Suhr G., Harvey J., 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15 20′ N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234, 179-210.
  • Pearce J.A., Cann J., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters. 19, 290-300.
  • Pearce J.A., Norry M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to mineralogy and petrology, 69, 33-47.
  • Roser B., Korsch R., 1986. Determination of tectonic setting of sandstone-mudstone suites using content and ratio. The Journal of Geology. 635-650.
  • Streckeisen A., 1976. To each plutonic rock its proper name. Earth-science reviews, 12, 1-33.
  • Sun S.-S., McDonough W., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313-345.
  • Van de Kamp P.C., 1968. Geochemistry and origin of metasediments in the Haliburton-Madoc area, southeastern Ontario. Canadian journal of earth sciences, 5, 1337-1372.
  • Van de Kamp P.C., Leake B.E., Senior A., 1976. The petrography and geochemistry of some Californian arkoses with application to identifying gneisses of metasedimentary origin. The Journal of Geology. 195-212.
  • Wilson M., 2007. Igneous petrogenesis a global tectonic approach: Springer Science & Business Media, 466.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects General Geology, Geology (Other)
Journal Section Articles
Authors

Demet Kıran Yıldırım 0000-0001-5995-5723

Amr Abdelnasser 0000-0001-5994-7088

Publication Date August 31, 2022
Submission Date April 29, 2022
Published in Issue Year 2022

Cite

APA Yıldırım, D. K., & Abdelnasser, A. (2022). Atud (Mısır) Bölgesi’nde Bulunan Pan-African Temel Kayaçlarının Jeokimyasal Karakteristikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(4), 944-962. https://doi.org/10.35414/akufemubid.1111229
AMA Yıldırım DK, Abdelnasser A. Atud (Mısır) Bölgesi’nde Bulunan Pan-African Temel Kayaçlarının Jeokimyasal Karakteristikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2022;22(4):944-962. doi:10.35414/akufemubid.1111229
Chicago Yıldırım, Demet Kıran, and Amr Abdelnasser. “Atud (Mısır) Bölgesi’nde Bulunan Pan-African Temel Kayaçlarının Jeokimyasal Karakteristikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 4 (August 2022): 944-62. https://doi.org/10.35414/akufemubid.1111229.
EndNote Yıldırım DK, Abdelnasser A (August 1, 2022) Atud (Mısır) Bölgesi’nde Bulunan Pan-African Temel Kayaçlarının Jeokimyasal Karakteristikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 4 944–962.
IEEE D. K. Yıldırım and A. Abdelnasser, “Atud (Mısır) Bölgesi’nde Bulunan Pan-African Temel Kayaçlarının Jeokimyasal Karakteristikleri”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 4, pp. 944–962, 2022, doi: 10.35414/akufemubid.1111229.
ISNAD Yıldırım, Demet Kıran - Abdelnasser, Amr. “Atud (Mısır) Bölgesi’nde Bulunan Pan-African Temel Kayaçlarının Jeokimyasal Karakteristikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/4 (August 2022), 944-962. https://doi.org/10.35414/akufemubid.1111229.
JAMA Yıldırım DK, Abdelnasser A. Atud (Mısır) Bölgesi’nde Bulunan Pan-African Temel Kayaçlarının Jeokimyasal Karakteristikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:944–962.
MLA Yıldırım, Demet Kıran and Amr Abdelnasser. “Atud (Mısır) Bölgesi’nde Bulunan Pan-African Temel Kayaçlarının Jeokimyasal Karakteristikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 4, 2022, pp. 944-62, doi:10.35414/akufemubid.1111229.
Vancouver Yıldırım DK, Abdelnasser A. Atud (Mısır) Bölgesi’nde Bulunan Pan-African Temel Kayaçlarının Jeokimyasal Karakteristikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(4):944-62.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.