Research Article
BibTex RIS Cite

Mikro Boyutlu ZnO Parçacıklarının Optik ve Fotonik Özelliklerinin Seryum Katkılama ile İyileştirilmesi

Year 2022, , 1139 - 1148, 27.10.2022
https://doi.org/10.35414/akufemubid.1122241

Abstract

Artan nüfus ve çevresel nedenlerle su kıtlığı günümüzün en acil sorunlarından biridir. Bu durumu çözmek için insanlığın yapabileceği en önemli şey kirli suları geri dönüştürmektir. ZnO, benzersiz özellikleri nedeniyle fotokatalitik proses uygulamaları için yaygın olarak kullanılmaktadır. Sol-jel yöntemiyle üretilen mikron boyutlu ZnO partiküllerinin, nadir toprak elementi olan Seryum katkı maddesi katkılanarak fotokatalitik özelliklerinin iyileştirilmesi amaçlanmıştır. Ce katkı oranının etkisini incelemek için yapısal, morfolojik, optik ve fotokatalitik özellikler karakterize edildi. Artan tane boyutu, Ce4+'nın ZnO kafesine verimli bir şekilde entegre olduğunu gösterdi. Wurtzite ZnO kafesine Ce katkısı, mikro boyutlu ZnO parçacıklarının hem emisyonunu hem de fotokatalitik verimliliğini iyileştirdi. Ayrıca fotokatalitik verim üzerinde Ce doping işleminin tane boyutundan daha etkili olduğu ortaya çıkmıştır.

References

  • Al Abdullah, K., Awad, S., Zaraket, J., & Salame, C., 2017. Synthesis of ZnO nanopowders by using sol-gel and studying their structural and electrical properties at different temperature. Energy Procedia, 119, 565-570.
  • Anandan, S., & Miyauchi, M., 2011. Ce-doped ZnO (CexZn1-xO) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting. Physical Chemistry Chemical Physics, 13(33), 14937-14945.
  • Bomila, R., Suresh, S., & Srinivasan, S., 2019. Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications. Journal of Materials Science-Materials in Electronics, 30(1), 582-592.
  • Chelouche, A., Touam, T., Tazerout, M., Boudjouan, E., Djouadi, D., & Doghmane, A., 2017. Low cerium doping investigation on structural and photoluminescence properties of sol-gel ZnO thin films. Journal of Luminescence, 181, 448-454.
  • Choudhary, S., Bisht, A., Satpati, B., & Mohapatra, S. 2021. Facile synthesis of Ce-doped ZnO nanospindles for photocatalytic applications. Applied Physics a-Materials Science & Processing, 127(12), 1-14.
  • Daneshvar, N., Salari, D., & Khataee, A. R., 2004. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology a-Chemistry, 162(2-3), 317-322.
  • Djaja, N. F., & R., S., 2013. Characteristics and Photocatalytics Activities of Ce-Doped ZnO Nanoparticles. Materials Sciences and Applications, 4(2), 145-152.
  • Demirci, S., Dikici, T., Tuncay, M. M., & Kaya, N., 2020. A study of heating rate effect on the photocatalytic performances of ZnO powders prepared by sol-gel route: Their kinetic and thermodynamic studies. Applied Surface Science, 507, 145083.
  • Gupta, A., Saurav, J. R., & Bhattacharya, S., 2015. Solar light based degradation of organic pollutants using ZnO nanobrushes for water filtration. Rsc Advances, 5(87), 71472-71481.
  • Gupta, J., Barick, K. C., & Bahadur, D. 2011. Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures. Journal of Alloys and Compounds, 509(23), 6725-6730.
  • Jayachandraiah, C., & Krishnaiah, G., 2017. Influence of cerium dopant on magnetic and dielectric properties of ZnO nanoparticles. Journal of Materials Science, 52(12), 7058-7066.
  • Jung, Y. I., Noh, B. Y., Lee, Y. S., Baek, S. H., Kim, J. H., & Park, I. K., 2012. Visible emission from Ce-doped ZnO nanorods grown by hydrothermal method without a post thermal annealing process. Nanoscale Research Letters, 7(1), 1-5 .
  • Kar, A., Smith, Y. R., & Subramanian, V., 2009. Improved Photocatalytic Degradation of Textile Dye Using Titanium Dioxide Nanotubes Formed Over Titanium Wires. Environmental Science & Technology, 43(9), 3260-3265.
  • Karidas, S., Veena, B. K., Pujari, N., Krishna, P., & Chunduru, V., 2020. Photodegradation of Methylene Blue (MB) using Cerium-doped Zinc Oxide nanoparticles. Sadhana-Academy Proceedings in Engineering Sciences, 45(1), 1-9.
  • Keskin, O. Y., Dalmis, R., Birlik, I., & Azem, N. F. A. 2020. Comparison of the effect of non-metal and rare-earth element doping on structural and optical properties of CuO/TiO2 one-dimensional photonic crystals. Journal of Alloys and Compounds, 817, 153262.
  • Kumar, R., Kumar, G., & Umar, A., 2014. Zinc Oxide Nanomaterials for Photocatalytic Degradation of Methyl Orange: A Review. Nanoscience and Nanotechnology Letters, 6(8), 631-650.
  • Kumar, R., Umar, A., Kumar, G., Akhtar, M. S., Wang, Y., & Kim, S. H., 2015. Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceramics International, 41(6), 7773-7782.
  • Kuo, S. Y., Chen, W. C., Lai, F. I., Cheng, C. P., Kuo, H. C., Wang, S. C., & Hsieh, W. F., 2006. Effects of doping concentration and annealing temperature on properties of highly-oriented al-doped ZnO films. Journal of Crystal Growth, 287(1), 78-84.
  • Lang, J. H., Han, Q., Yang, J. H., Li, C. S., Li, X., Yang, L. L., Cao, J., 2010. Fabrication and optical properties of Ce-doped ZnO nanorods. Journal of Applied Physics, 107(7), 074302.
  • Li, H. L., Lv, Y. B., Li, J. Z., & Yu, K., 2014. Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO. Journal of Alloys and Compounds, 617, 102-107.
  • Li, L., Liu, Z. Y., Zhang, Q. Q., Meng, C. H., Zhang, T. R., & Zhai, J., 2015. Underwater superoleophobic porous membrane based on hierarchical TiO2 nanotubes: multifunctional integration of oil-water separation, flow-through photocatalysis and self-cleaning. Journal of Materials Chemistry A, 3(3), 1279-1286.
  • Li, W., Wang, G. J., Chen, C. E. H., Liao, J. C., & Li, Z. C., 2017. Enhanced Visible Light Photocatalytic Activity of ZnO Nanowires Doped with Mn2+ and Co2+ Ions. Nanomaterials, 7(1), 20.
  • Pathak, T. K., Coetsee-Hugo, E., Swart, H. C., Swart, C. W., & Kroon, R. E., 2020. Preparation and characterization of Ce doped ZnO nanomaterial for photocatalytic and biological applications. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 261, 114780.
  • Reddy, I. N., Reddy, C. V., Sreedhar, M., Shim, J., Cho, M., & Kim, D., 2019. Effect of ball milling on optical properties and visible photocatalytic activity of Fe doped ZnO nanoparticles. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 240, 33-40.
  • Savolainen, K., Pylkkanen, L., Norppa, H., Falck, G., Lindberg, H., Tuomi, T., Seipenbusch, M. 2010. Nanotechnologies, engineered nanomaterials and occupational health and safety - A review. Safety Science, 48(8), 957-963.
  • Sharma, D. K., Sharma, K. K., Kumar, V., & Sharma, A., 2016. Effect of Ce doping on the structural, optical and magnetic properties of ZnO nanoparticles. Journal of Materials Science-Materials in Electronics, 27(10), 10330-10335.
  • Sin, J. C., Lam, S. M., Lee, K. T., & Mohamed, A. R. 2014. Preparation of rare earth-doped ZnO hierarchical micro/nanospheres and their enhanced photocatalytic activity under visible light irradiation. Ceramics International, 40(4), 5431-5440.
  • Singh, P., & Borthakur, A. 2018. A review on biodegradation and photocatalytic degradation of organic pollutants: A bibliometric and comparative analysis. Journal of Cleaner Production, 196, 1669-1680.
  • Sinha, N., Ray, G., Bhandari, S., Godara, S., & Kumar, B., 2014. Synthesis and enhanced properties of cerium doped ZnO nanorods. Ceramics International, 40(8), 12337-12342.
  • Subramanian, M., Thakur, P., Tanemura, M., Hihara, T., Ganesan, V., Soga, T., Jimbo, T. 2010. Intrinsic ferromagnetism and magnetic anisotropy in Gd-doped ZnO thin films synthesized by pulsed spray pyrolysis method. Journal of Applied Physics, 108(5), 053904.
  • Thambidurai, M., Muthukumarasamy, N., Velauthapillai, D., & Lee, C., 2014. Rosa centifolia sensitized ZnO nanorods for photoelectrochemical solar cell applications. Solar Energy, 106, 143-150.
  • Xu, C. P., Anusuyadevi, P. R., Aymonier, C., Luque, R., & Marre, S., 2019. Nanostructured materials for photocatalysis. Chemical Society Reviews, 48(14), 3868-3902.
  • Yang, L., Gao, M. G., Dai, B., Guo, X. H., Liu, Z. Y., & Peng, B. H., 2016. Synthesis of spindle-shaped AgI/TiO2 nanoparticles with enhanced photocatalytic performance. Applied Surface Science, 386, 337-344.
  • Zamiri, R., Lemos, A. F., Reblo, A., Ahangar, H. A., & Ferreira, J. M. F., 2014. Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceramics International, 40(1), 523-529.

Enhancement of Optical and Photonic Properties of the Micro-sized ZnO Particles by Cerium Doping

Year 2022, , 1139 - 1148, 27.10.2022
https://doi.org/10.35414/akufemubid.1122241

Abstract

Water shortage is one of the most urgent issues today, owing to rising population and environmental reasons. The most significant thing that humanity can do to solve this situation is to recycle waste or contaminated water. ZnO has been widely employed for photocatalytic applications due to its unique features. It was aimed to improve the photocatalytic properties of the micron-sized ZnO particles by doping with Cerium dopant, which is a rare earth element and used in many photocatalytic studies. Structural, morphological, optical, and photocatalytic properties were characterized to examine the effect of the Ce dopant ratio. The increased grain size demonstrated that Ce4+ was efficiently integrated into the ZnO lattice. Ce doping into the Wurtzite ZnO lattice improved both the emission and photocatalytic efficiency of the micro-sized ZnO particles. Additionally, it was revealed that the Ce doping procedure is more effective than grain size on the photocatalytic efficiency.

References

  • Al Abdullah, K., Awad, S., Zaraket, J., & Salame, C., 2017. Synthesis of ZnO nanopowders by using sol-gel and studying their structural and electrical properties at different temperature. Energy Procedia, 119, 565-570.
  • Anandan, S., & Miyauchi, M., 2011. Ce-doped ZnO (CexZn1-xO) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting. Physical Chemistry Chemical Physics, 13(33), 14937-14945.
  • Bomila, R., Suresh, S., & Srinivasan, S., 2019. Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications. Journal of Materials Science-Materials in Electronics, 30(1), 582-592.
  • Chelouche, A., Touam, T., Tazerout, M., Boudjouan, E., Djouadi, D., & Doghmane, A., 2017. Low cerium doping investigation on structural and photoluminescence properties of sol-gel ZnO thin films. Journal of Luminescence, 181, 448-454.
  • Choudhary, S., Bisht, A., Satpati, B., & Mohapatra, S. 2021. Facile synthesis of Ce-doped ZnO nanospindles for photocatalytic applications. Applied Physics a-Materials Science & Processing, 127(12), 1-14.
  • Daneshvar, N., Salari, D., & Khataee, A. R., 2004. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology a-Chemistry, 162(2-3), 317-322.
  • Djaja, N. F., & R., S., 2013. Characteristics and Photocatalytics Activities of Ce-Doped ZnO Nanoparticles. Materials Sciences and Applications, 4(2), 145-152.
  • Demirci, S., Dikici, T., Tuncay, M. M., & Kaya, N., 2020. A study of heating rate effect on the photocatalytic performances of ZnO powders prepared by sol-gel route: Their kinetic and thermodynamic studies. Applied Surface Science, 507, 145083.
  • Gupta, A., Saurav, J. R., & Bhattacharya, S., 2015. Solar light based degradation of organic pollutants using ZnO nanobrushes for water filtration. Rsc Advances, 5(87), 71472-71481.
  • Gupta, J., Barick, K. C., & Bahadur, D. 2011. Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures. Journal of Alloys and Compounds, 509(23), 6725-6730.
  • Jayachandraiah, C., & Krishnaiah, G., 2017. Influence of cerium dopant on magnetic and dielectric properties of ZnO nanoparticles. Journal of Materials Science, 52(12), 7058-7066.
  • Jung, Y. I., Noh, B. Y., Lee, Y. S., Baek, S. H., Kim, J. H., & Park, I. K., 2012. Visible emission from Ce-doped ZnO nanorods grown by hydrothermal method without a post thermal annealing process. Nanoscale Research Letters, 7(1), 1-5 .
  • Kar, A., Smith, Y. R., & Subramanian, V., 2009. Improved Photocatalytic Degradation of Textile Dye Using Titanium Dioxide Nanotubes Formed Over Titanium Wires. Environmental Science & Technology, 43(9), 3260-3265.
  • Karidas, S., Veena, B. K., Pujari, N., Krishna, P., & Chunduru, V., 2020. Photodegradation of Methylene Blue (MB) using Cerium-doped Zinc Oxide nanoparticles. Sadhana-Academy Proceedings in Engineering Sciences, 45(1), 1-9.
  • Keskin, O. Y., Dalmis, R., Birlik, I., & Azem, N. F. A. 2020. Comparison of the effect of non-metal and rare-earth element doping on structural and optical properties of CuO/TiO2 one-dimensional photonic crystals. Journal of Alloys and Compounds, 817, 153262.
  • Kumar, R., Kumar, G., & Umar, A., 2014. Zinc Oxide Nanomaterials for Photocatalytic Degradation of Methyl Orange: A Review. Nanoscience and Nanotechnology Letters, 6(8), 631-650.
  • Kumar, R., Umar, A., Kumar, G., Akhtar, M. S., Wang, Y., & Kim, S. H., 2015. Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceramics International, 41(6), 7773-7782.
  • Kuo, S. Y., Chen, W. C., Lai, F. I., Cheng, C. P., Kuo, H. C., Wang, S. C., & Hsieh, W. F., 2006. Effects of doping concentration and annealing temperature on properties of highly-oriented al-doped ZnO films. Journal of Crystal Growth, 287(1), 78-84.
  • Lang, J. H., Han, Q., Yang, J. H., Li, C. S., Li, X., Yang, L. L., Cao, J., 2010. Fabrication and optical properties of Ce-doped ZnO nanorods. Journal of Applied Physics, 107(7), 074302.
  • Li, H. L., Lv, Y. B., Li, J. Z., & Yu, K., 2014. Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO. Journal of Alloys and Compounds, 617, 102-107.
  • Li, L., Liu, Z. Y., Zhang, Q. Q., Meng, C. H., Zhang, T. R., & Zhai, J., 2015. Underwater superoleophobic porous membrane based on hierarchical TiO2 nanotubes: multifunctional integration of oil-water separation, flow-through photocatalysis and self-cleaning. Journal of Materials Chemistry A, 3(3), 1279-1286.
  • Li, W., Wang, G. J., Chen, C. E. H., Liao, J. C., & Li, Z. C., 2017. Enhanced Visible Light Photocatalytic Activity of ZnO Nanowires Doped with Mn2+ and Co2+ Ions. Nanomaterials, 7(1), 20.
  • Pathak, T. K., Coetsee-Hugo, E., Swart, H. C., Swart, C. W., & Kroon, R. E., 2020. Preparation and characterization of Ce doped ZnO nanomaterial for photocatalytic and biological applications. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 261, 114780.
  • Reddy, I. N., Reddy, C. V., Sreedhar, M., Shim, J., Cho, M., & Kim, D., 2019. Effect of ball milling on optical properties and visible photocatalytic activity of Fe doped ZnO nanoparticles. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 240, 33-40.
  • Savolainen, K., Pylkkanen, L., Norppa, H., Falck, G., Lindberg, H., Tuomi, T., Seipenbusch, M. 2010. Nanotechnologies, engineered nanomaterials and occupational health and safety - A review. Safety Science, 48(8), 957-963.
  • Sharma, D. K., Sharma, K. K., Kumar, V., & Sharma, A., 2016. Effect of Ce doping on the structural, optical and magnetic properties of ZnO nanoparticles. Journal of Materials Science-Materials in Electronics, 27(10), 10330-10335.
  • Sin, J. C., Lam, S. M., Lee, K. T., & Mohamed, A. R. 2014. Preparation of rare earth-doped ZnO hierarchical micro/nanospheres and their enhanced photocatalytic activity under visible light irradiation. Ceramics International, 40(4), 5431-5440.
  • Singh, P., & Borthakur, A. 2018. A review on biodegradation and photocatalytic degradation of organic pollutants: A bibliometric and comparative analysis. Journal of Cleaner Production, 196, 1669-1680.
  • Sinha, N., Ray, G., Bhandari, S., Godara, S., & Kumar, B., 2014. Synthesis and enhanced properties of cerium doped ZnO nanorods. Ceramics International, 40(8), 12337-12342.
  • Subramanian, M., Thakur, P., Tanemura, M., Hihara, T., Ganesan, V., Soga, T., Jimbo, T. 2010. Intrinsic ferromagnetism and magnetic anisotropy in Gd-doped ZnO thin films synthesized by pulsed spray pyrolysis method. Journal of Applied Physics, 108(5), 053904.
  • Thambidurai, M., Muthukumarasamy, N., Velauthapillai, D., & Lee, C., 2014. Rosa centifolia sensitized ZnO nanorods for photoelectrochemical solar cell applications. Solar Energy, 106, 143-150.
  • Xu, C. P., Anusuyadevi, P. R., Aymonier, C., Luque, R., & Marre, S., 2019. Nanostructured materials for photocatalysis. Chemical Society Reviews, 48(14), 3868-3902.
  • Yang, L., Gao, M. G., Dai, B., Guo, X. H., Liu, Z. Y., & Peng, B. H., 2016. Synthesis of spindle-shaped AgI/TiO2 nanoparticles with enhanced photocatalytic performance. Applied Surface Science, 386, 337-344.
  • Zamiri, R., Lemos, A. F., Reblo, A., Ahangar, H. A., & Ferreira, J. M. F., 2014. Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceramics International, 40(1), 523-529.
There are 34 citations in total.

Details

Primary Language English
Subjects Material Characterization
Journal Section Articles
Authors

Ramazan Dalmış 0000-0002-5508-2539

Publication Date October 27, 2022
Submission Date May 27, 2022
Published in Issue Year 2022

Cite

APA Dalmış, R. (2022). Enhancement of Optical and Photonic Properties of the Micro-sized ZnO Particles by Cerium Doping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(5), 1139-1148. https://doi.org/10.35414/akufemubid.1122241
AMA Dalmış R. Enhancement of Optical and Photonic Properties of the Micro-sized ZnO Particles by Cerium Doping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2022;22(5):1139-1148. doi:10.35414/akufemubid.1122241
Chicago Dalmış, Ramazan. “Enhancement of Optical and Photonic Properties of the Micro-Sized ZnO Particles by Cerium Doping”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 5 (October 2022): 1139-48. https://doi.org/10.35414/akufemubid.1122241.
EndNote Dalmış R (October 1, 2022) Enhancement of Optical and Photonic Properties of the Micro-sized ZnO Particles by Cerium Doping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 5 1139–1148.
IEEE R. Dalmış, “Enhancement of Optical and Photonic Properties of the Micro-sized ZnO Particles by Cerium Doping”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 5, pp. 1139–1148, 2022, doi: 10.35414/akufemubid.1122241.
ISNAD Dalmış, Ramazan. “Enhancement of Optical and Photonic Properties of the Micro-Sized ZnO Particles by Cerium Doping”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/5 (October 2022), 1139-1148. https://doi.org/10.35414/akufemubid.1122241.
JAMA Dalmış R. Enhancement of Optical and Photonic Properties of the Micro-sized ZnO Particles by Cerium Doping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:1139–1148.
MLA Dalmış, Ramazan. “Enhancement of Optical and Photonic Properties of the Micro-Sized ZnO Particles by Cerium Doping”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 5, 2022, pp. 1139-48, doi:10.35414/akufemubid.1122241.
Vancouver Dalmış R. Enhancement of Optical and Photonic Properties of the Micro-sized ZnO Particles by Cerium Doping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(5):1139-48.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.