Research Article
BibTex RIS Cite

Geri Döngü Akışlı Ultrasonik Reaktörde Ag+ ile Escherichia coli Dezenfeksiyonu

Year 2022, , 805 - 813, 31.08.2022
https://doi.org/10.35414/akufemubid.1125089

Abstract

Son zamanlarda yaşanan pandemi sürecinin ardından bulaşıcı hastalıkların kontrolü için kullanılan dezenfeksiyon/sterilizasyon yöntemleri daha da önem kazanmıştır. Patojenik mikroorganizmaların neden olduğu salgın hastalıkların önlenmesinde sıklıkla kullanılan klor uygulamaları, ozon ve ultraviyole gibi mikrobiyal inaktivasyon süreçlerinin sahip olduğu olumsuz etkiler nedeniyle ultrases (US) gibi yeni dezenfeksiyon yöntemleri geliştirilmektedir. Bu çalışma kapsamında 22kHz, 36kHz ve 833kHz ultrasonik frekanslarda çalıştırılan geri döngülü akışlı ultrasonik reaktörlerde su kaynaklarında fekal kontaminasyon varlığını işaret eden Escherichia coli bakterisi kullanılarak dezenfeksiyon işlemleri gerçekleştirilmiştir. Bu çalışmada esas olarak, gümüş iyonlarının (Ag+) (0.1 mM, 0.01 mM ve 0.005 mM Ag+) US ile (22 kHz, 36 kHz ve 833 kHz ultrasonik frekanslar) hibrit kullanımı 1x104 CFU/mL başlangıç Escherichia coli bakteri konsantrasyonu kullanılarak araştırılmıştır. Çalışma sonucunda Escherichia coli minimum Ag+ konsantrasyonunda ve 22 kHz ultrasonik frekansta 4-log giderim verimi elde edilerek inaktive edilmiştir. Sonuç olarak, US ve Ag+ yöntemleriyle dezenfeksiyon etkili bir şekilde sağlanmış ve US-Ag+ ikili proseslerinde, sinerjik etkileri nedeniyle daha hızlı dekontaminasyon süresi ve daha düşük Ag+ konsantrasyonu ile daha fazla Escherichia coli inaktivasyon oranı elde edilmiştir.

References

  • Agnihotri S., Mukherji S. Mukherji S., 2013. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5(16), 7328-7340.
  • Akhavan O., Ghaderi E., 2010. Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities. Surface & Coatings Technology, 204(21-22), 3676-3683.
  • Al-Hamzaha A.A., Rahmana M.M., Kurupa P., Barnawia, B. Ghannam A., Musharraf I. Palmerd N.,2019. Use of chlorine dioxide as alternative to chlorination in reverse osmosis product water. Desalination and Water Treatment, 163, 57-66.
  • Alonso A., Munoz-Berbel X., Vigues N., Macanas J., Munoz M., Mas J., Muraviev D.N., 2012. Characterization of Fibrous Polymer Ag+ /Cobalt Nanocomposite with Enhanced Bactericide Activity. Langmuir, 28(1), 783-790.
  • Antoniadis A., Poulios I., Nikolakaki E., Mantzavinos D., 2007. Sonochemical disinfection of municipal wastewater. Journal of Hazardous Materials, 146(3), 492–495.
  • Basri H., Ismail A. F., Aziz M., 2011. Polyethersulfone (PES)-silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination, 273(1), 72-80.
  • Barani, H., et al., 2011. Nano silver entrapped in phospholipids membrane: Synthesis, characteristics and antibacterial kinetics. Molecular Membrane Biology, 28(4), 206-215.
  • Bláhová L., Kuta J., Doležalová L., Kozáková S., Krovová T. Bláha L. 2021. The efficiency of antineoplastic drug contamination removal by widely used disinfectants–laboratory and hospital studies. International Archives of Occupational and Environmental Health, 1(1), 1-16.
  • Brugnera M.F., Miyata M., Leite C.Q., Zanoni M.V.B., 2021. Silver ion release from electrodes of nanotubes of TiO2 impregnated with Ag nanoparticles applied in photoelectrocatalytic disinfection. Journal of Photochemistry and Photobiology A: Chemistry, 278(1), 1-8.
  • Chong M. N., Sharma A. K., Burn S., Saint C. P., 2012. Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment. Journal of Cleaner Production, 35, 230-238.
  • Dadjour M.F., Ogino C., Matsumura S., Nakamura S., Shimizu N. Disinfection of Legionella pneumophila by ultrasonic treatment with TiO2. Water research, 40(6), 1137-1142.
  • Declerck P., Vanysacker L., Hulsmans A., Lambert N., Liers S., Ollevier F., 2010. Evaluation of power ultrasound for disinfection of both Legionella pneumophila and its environmental host Acanthamoeba castellanii. Water research, 44(3), 703-710.
  • Giannakis S., Papoutsakis S., Darakas E., Escalas-Canellas A., Petrier C., Pulgarin C., 2015. Sonication enhancement of near-neutral photo-Fenton for effective E-coli inactivation in wastewater. Ultrasonics Sonochemistry, 22, 515-526.
  • Gogate P.R., 2007. Application of cavitational reactors for water disinfection: Current status and path forward. Journal of Environmental Management, 85(4), 801-815.
  • Gross P.A., Pronkin S.N., Cottineau T., Keller N., Keller V., Savinova E.R.,2012. Effect of deposition of Ag nanoparticles on photoelectrocatalytic activity of vertically aligned TiO2 nanotubes. Catalysis today, 189, 93-100.
  • Hoang N. T. T., Suc N. V., Nguyen T. V.,2015. Bactericidal activities and synergistic effects of Ag-TiO2 and Ag-TiO2-SiO2 nanomaterials under UV-C and dark conditions. International Journal of Nanotechnology, 12(5-7), 367-379.
  • Ibarluzea J., Moreno B., Zigorraga C., Castilla T., Martinez M., Santamaria J., 1998. Determinants of the microbiological water quality of indoor swimming-pools in relation to disinfection. Water Research, 32(3), 865-871.
  • Ince N.H., Belen R., 2021. Aqueous phase disinfection with power ultrasound: process kinetics and effect of solid catalysts. Environmental science & technology, 35(9), 1885-1888, 2001.
  • Jyoti K. K., Pandit A. B.,2004. Ozone and cavitation for water disinfection, Biochemical Engineering Journal, 18(1), 9-19.
  • Joyce E., Mason T. J., Phull S. S., Lorimer J. P., 2003. The development and evaluation of electrolysis in conjunction with power sonication for the disinfection of bacterial suspensions. Ultrasonics Sonochemistry, 10 (4-5), 231-234.
  • Joyce E., Phull S. S., Lorimer J. P., Mason T. J., 2003. The development and evaluation of sonication for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 10(6), 315-318.
  • Karaer Ozmen F., Koparal A. S., 2021. Hybrid water disinfection system with silver ion in continuous flow ultrasonic reactor. Desalination and Water Treatment, 213, 64– 74.
  • Khaire R.A., Bhaskar N.T, Gogate P.R., 2022. Applications of ultrasound for food preservation and disinfection: A critical review. Journal of Food Processing and Preservation, 1, e16091.
  • Leighton T.G., 1998. The principle of cavitation., In: M.J.W. Povey and T.J. Mason, (Eds), Ultrasound in food processing, Blackie Academic and Professional, London, 151-178.
  • Leighton T.G, 2007. What is ultrasound? Prog Biophys Moleculer Biology, 93, 3–83.
  • Li R.A., McDonald J.A., Sathasivan A., Khan S.J.,2019. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: a systematic review. Water research, 153, 335-348.
  • Limaye M.S., Coakley W.T., 1998. Clarification of small volume microbial suspensions in an ultrasonic standing wave. Journal of applied microbiology, 84(6), 1035-1042.
  • Lin S., Huang R., Cheng Y., Liu J., Lau B.L., Wiesner M.R., 2013. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water research, 47(12), 3959-3965.
  • Manoli K., Sarathy S., Maffettone R., Santoro D., 2019. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid. Water research, 153, 251-262.
  • Mason T.J., 1990. Chemistry with Ultrasound. Elsevier, England.
  • Mason T.J., Joyce E., Phull S.S., Lorimer J.P., 2003. Potential uses of ultrasound in the biological decontamination of water. Ultrasonics Sonochemistry, 10, 139 – 232.
  • Naddeo V., Landi M., Belgiorno V., Napoli R. M. A., 2009. Wastewater disinfection by combination of sonication and ultraviolet irradiation. Journal of Hazardous Materials, 168(2-3), 925-929.
  • Nawaz M., Han M.Y., Kim T.I., Manzoor U., Amin M.T., 2012. Silver disinfection of Pseudomonas aeruginosa and E. coli in rooftop harvested rainwater for potable purposes. Science of the Total Environment, 431, 20-25.
  • Phull S. S., Newman A. P., Lorimer A. P., Pollet B., Mason T. J., 2007. The development and evaluation of sonication in the biocidal treatment of water. Ultrasonics Sonochemistry, 4(2), 157-164. Qu X.L., Brame J., Li Q.L., Alvarez P. J. J., 2013. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Accounts of Chemical Research, 46(3), 834-843.
  • Sarwar N., Humayoun U.B., Kumar M., Zaidi S.F.A., Yoo J.H., Ali N., Yoon D.H.,2021. Citric acid mediated green synthesis of copper nanoparticles using cinnamon bark extract and its multifaceted applications. Journal of Cleaner Production, 292, e125974.
  • Singer P.C., 1994. Control of disinfection by-products in drinking water. Journal of environmental engineering, 120(4), 727-744.
  • Spellman F. R., 1999. Choosing disinfection alternatives for water/wastewater treatment plants. CRC Press, London.
  • Van Aken B., Lin L. S., 2011. Effect of the disinfection agents chlorine, UV irradiation, silver ions, and TiO2 nanoparticles/near-UV on DNA molecules. Water Science and Technology, 64(6), 1226-1232.
  • Ziembowicz S., Kida M., Koszelnik P.,2018. The impact of selected parameters on the formation of hydrogen peroxide by sonochemical process. Separation and Purification Technology, 204, 149-153.

Escherichia coli Disinfection with Ag+ in the Recycled Flow Ultrasonic Reactor

Year 2022, , 805 - 813, 31.08.2022
https://doi.org/10.35414/akufemubid.1125089

Abstract

After the recent pandemic process, disinfection/sterilization methods used for the control of infectious diseases have gained even more importance. The alternative disinfection studies like ultrasound (US) have been developing due to the various shortcomings of microbial inactivation processes such as chlorine application, ozone and ultraviolet radiation, which are widely applied for the prevention of epidemic diseases caused by pathogenic microorganisms. Within the scope of this study, disinfection treatments were carried out in recycled flow ultrasonic reactors operated at 22kHz, 36kHz and 833kHz ultrasonic frequencies using Escherichia coli bacteria indicated fecal contamination in the water sources. In this article, the combined usage of silver ions (0.1mM, 0.01 mM and 0.005 mM Ag+) and US (22 kHz, 36 kHz and 833 kHz ultrasonic frequencies) were mainly investigated using initial Escherichia coli bacteria concentration of 1x104 CFU/mL. As a result of the study, Escherichia coli was inactivated obtaining 4-log reduction with 22 kHz ultrasonic frequency with the minimum Ag+ concentrations. To conclude, the disinfection was effectively achieved with US and Ag+ methods, and higher Escherichia coli inactivation rate were obtained in US-Ag+ dual processes with faster decontamination time and lower Ag+ concentration due to their synergistic effects.

References

  • Agnihotri S., Mukherji S. Mukherji S., 2013. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5(16), 7328-7340.
  • Akhavan O., Ghaderi E., 2010. Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities. Surface & Coatings Technology, 204(21-22), 3676-3683.
  • Al-Hamzaha A.A., Rahmana M.M., Kurupa P., Barnawia, B. Ghannam A., Musharraf I. Palmerd N.,2019. Use of chlorine dioxide as alternative to chlorination in reverse osmosis product water. Desalination and Water Treatment, 163, 57-66.
  • Alonso A., Munoz-Berbel X., Vigues N., Macanas J., Munoz M., Mas J., Muraviev D.N., 2012. Characterization of Fibrous Polymer Ag+ /Cobalt Nanocomposite with Enhanced Bactericide Activity. Langmuir, 28(1), 783-790.
  • Antoniadis A., Poulios I., Nikolakaki E., Mantzavinos D., 2007. Sonochemical disinfection of municipal wastewater. Journal of Hazardous Materials, 146(3), 492–495.
  • Basri H., Ismail A. F., Aziz M., 2011. Polyethersulfone (PES)-silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination, 273(1), 72-80.
  • Barani, H., et al., 2011. Nano silver entrapped in phospholipids membrane: Synthesis, characteristics and antibacterial kinetics. Molecular Membrane Biology, 28(4), 206-215.
  • Bláhová L., Kuta J., Doležalová L., Kozáková S., Krovová T. Bláha L. 2021. The efficiency of antineoplastic drug contamination removal by widely used disinfectants–laboratory and hospital studies. International Archives of Occupational and Environmental Health, 1(1), 1-16.
  • Brugnera M.F., Miyata M., Leite C.Q., Zanoni M.V.B., 2021. Silver ion release from electrodes of nanotubes of TiO2 impregnated with Ag nanoparticles applied in photoelectrocatalytic disinfection. Journal of Photochemistry and Photobiology A: Chemistry, 278(1), 1-8.
  • Chong M. N., Sharma A. K., Burn S., Saint C. P., 2012. Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment. Journal of Cleaner Production, 35, 230-238.
  • Dadjour M.F., Ogino C., Matsumura S., Nakamura S., Shimizu N. Disinfection of Legionella pneumophila by ultrasonic treatment with TiO2. Water research, 40(6), 1137-1142.
  • Declerck P., Vanysacker L., Hulsmans A., Lambert N., Liers S., Ollevier F., 2010. Evaluation of power ultrasound for disinfection of both Legionella pneumophila and its environmental host Acanthamoeba castellanii. Water research, 44(3), 703-710.
  • Giannakis S., Papoutsakis S., Darakas E., Escalas-Canellas A., Petrier C., Pulgarin C., 2015. Sonication enhancement of near-neutral photo-Fenton for effective E-coli inactivation in wastewater. Ultrasonics Sonochemistry, 22, 515-526.
  • Gogate P.R., 2007. Application of cavitational reactors for water disinfection: Current status and path forward. Journal of Environmental Management, 85(4), 801-815.
  • Gross P.A., Pronkin S.N., Cottineau T., Keller N., Keller V., Savinova E.R.,2012. Effect of deposition of Ag nanoparticles on photoelectrocatalytic activity of vertically aligned TiO2 nanotubes. Catalysis today, 189, 93-100.
  • Hoang N. T. T., Suc N. V., Nguyen T. V.,2015. Bactericidal activities and synergistic effects of Ag-TiO2 and Ag-TiO2-SiO2 nanomaterials under UV-C and dark conditions. International Journal of Nanotechnology, 12(5-7), 367-379.
  • Ibarluzea J., Moreno B., Zigorraga C., Castilla T., Martinez M., Santamaria J., 1998. Determinants of the microbiological water quality of indoor swimming-pools in relation to disinfection. Water Research, 32(3), 865-871.
  • Ince N.H., Belen R., 2021. Aqueous phase disinfection with power ultrasound: process kinetics and effect of solid catalysts. Environmental science & technology, 35(9), 1885-1888, 2001.
  • Jyoti K. K., Pandit A. B.,2004. Ozone and cavitation for water disinfection, Biochemical Engineering Journal, 18(1), 9-19.
  • Joyce E., Mason T. J., Phull S. S., Lorimer J. P., 2003. The development and evaluation of electrolysis in conjunction with power sonication for the disinfection of bacterial suspensions. Ultrasonics Sonochemistry, 10 (4-5), 231-234.
  • Joyce E., Phull S. S., Lorimer J. P., Mason T. J., 2003. The development and evaluation of sonication for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 10(6), 315-318.
  • Karaer Ozmen F., Koparal A. S., 2021. Hybrid water disinfection system with silver ion in continuous flow ultrasonic reactor. Desalination and Water Treatment, 213, 64– 74.
  • Khaire R.A., Bhaskar N.T, Gogate P.R., 2022. Applications of ultrasound for food preservation and disinfection: A critical review. Journal of Food Processing and Preservation, 1, e16091.
  • Leighton T.G., 1998. The principle of cavitation., In: M.J.W. Povey and T.J. Mason, (Eds), Ultrasound in food processing, Blackie Academic and Professional, London, 151-178.
  • Leighton T.G, 2007. What is ultrasound? Prog Biophys Moleculer Biology, 93, 3–83.
  • Li R.A., McDonald J.A., Sathasivan A., Khan S.J.,2019. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: a systematic review. Water research, 153, 335-348.
  • Limaye M.S., Coakley W.T., 1998. Clarification of small volume microbial suspensions in an ultrasonic standing wave. Journal of applied microbiology, 84(6), 1035-1042.
  • Lin S., Huang R., Cheng Y., Liu J., Lau B.L., Wiesner M.R., 2013. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water research, 47(12), 3959-3965.
  • Manoli K., Sarathy S., Maffettone R., Santoro D., 2019. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid. Water research, 153, 251-262.
  • Mason T.J., 1990. Chemistry with Ultrasound. Elsevier, England.
  • Mason T.J., Joyce E., Phull S.S., Lorimer J.P., 2003. Potential uses of ultrasound in the biological decontamination of water. Ultrasonics Sonochemistry, 10, 139 – 232.
  • Naddeo V., Landi M., Belgiorno V., Napoli R. M. A., 2009. Wastewater disinfection by combination of sonication and ultraviolet irradiation. Journal of Hazardous Materials, 168(2-3), 925-929.
  • Nawaz M., Han M.Y., Kim T.I., Manzoor U., Amin M.T., 2012. Silver disinfection of Pseudomonas aeruginosa and E. coli in rooftop harvested rainwater for potable purposes. Science of the Total Environment, 431, 20-25.
  • Phull S. S., Newman A. P., Lorimer A. P., Pollet B., Mason T. J., 2007. The development and evaluation of sonication in the biocidal treatment of water. Ultrasonics Sonochemistry, 4(2), 157-164. Qu X.L., Brame J., Li Q.L., Alvarez P. J. J., 2013. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Accounts of Chemical Research, 46(3), 834-843.
  • Sarwar N., Humayoun U.B., Kumar M., Zaidi S.F.A., Yoo J.H., Ali N., Yoon D.H.,2021. Citric acid mediated green synthesis of copper nanoparticles using cinnamon bark extract and its multifaceted applications. Journal of Cleaner Production, 292, e125974.
  • Singer P.C., 1994. Control of disinfection by-products in drinking water. Journal of environmental engineering, 120(4), 727-744.
  • Spellman F. R., 1999. Choosing disinfection alternatives for water/wastewater treatment plants. CRC Press, London.
  • Van Aken B., Lin L. S., 2011. Effect of the disinfection agents chlorine, UV irradiation, silver ions, and TiO2 nanoparticles/near-UV on DNA molecules. Water Science and Technology, 64(6), 1226-1232.
  • Ziembowicz S., Kida M., Koszelnik P.,2018. The impact of selected parameters on the formation of hydrogen peroxide by sonochemical process. Separation and Purification Technology, 204, 149-153.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fadime Karaer Özmen 0000-0003-4423-205X

Publication Date August 31, 2022
Submission Date June 2, 2022
Published in Issue Year 2022

Cite

APA Karaer Özmen, F. (2022). Escherichia coli Disinfection with Ag+ in the Recycled Flow Ultrasonic Reactor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(4), 805-813. https://doi.org/10.35414/akufemubid.1125089
AMA Karaer Özmen F. Escherichia coli Disinfection with Ag+ in the Recycled Flow Ultrasonic Reactor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2022;22(4):805-813. doi:10.35414/akufemubid.1125089
Chicago Karaer Özmen, Fadime. “Escherichia Coli Disinfection With Ag+ in the Recycled Flow Ultrasonic Reactor”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 4 (August 2022): 805-13. https://doi.org/10.35414/akufemubid.1125089.
EndNote Karaer Özmen F (August 1, 2022) Escherichia coli Disinfection with Ag+ in the Recycled Flow Ultrasonic Reactor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 4 805–813.
IEEE F. Karaer Özmen, “Escherichia coli Disinfection with Ag+ in the Recycled Flow Ultrasonic Reactor”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 4, pp. 805–813, 2022, doi: 10.35414/akufemubid.1125089.
ISNAD Karaer Özmen, Fadime. “Escherichia Coli Disinfection With Ag+ in the Recycled Flow Ultrasonic Reactor”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/4 (August 2022), 805-813. https://doi.org/10.35414/akufemubid.1125089.
JAMA Karaer Özmen F. Escherichia coli Disinfection with Ag+ in the Recycled Flow Ultrasonic Reactor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:805–813.
MLA Karaer Özmen, Fadime. “Escherichia Coli Disinfection With Ag+ in the Recycled Flow Ultrasonic Reactor”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 4, 2022, pp. 805-13, doi:10.35414/akufemubid.1125089.
Vancouver Karaer Özmen F. Escherichia coli Disinfection with Ag+ in the Recycled Flow Ultrasonic Reactor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(4):805-13.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.