Research Article
BibTex RIS Cite

Investigation of the Cross Sections and Effect of Level Density Models for Platinum Element

Year 2022, , 1256 - 1270, 28.12.2022
https://doi.org/10.35414/akufemubid.1143137

Abstract

In cases where experimental studies cannot be carried out and there is no experimental data with it, studies carried out with theoretical models shed light on the researchers' knowledge of different data. The most important of this data is the measurable or calculatable influence cross-section value, which is defined as the probability of a reaction occurrence. Examining the possible effects of different models in the calculation of the effect section is important for the correct calculation of this value. The most important data, the cross section of influence, has taken its place in the radioisotope world as well as in many areas of nuclear physics. With developing technology and advancing science, radioisotopes have widespread and diversified uses. Most commonly, radioisotopes are used in medical diagnosis and treatment applications. Among the many radioisotopes used for this purpose, 191-199Au radioisotopes are also important in terms of both their benefits and characteristics in medical applications. In this respect, the study aimed to investigate the effects of different nuclear level density models in production impact cross-section calculations of 191-199Au radioisotopes with deuteron reference. Theoretical cross sections using the TALYS code have been simulated for all isotopes. The results of the calculations obtained were compared with each other and with the experimental data in the literature and it was aimed to determine the most compatible level density models according to the reaction situations examined.

References

  • Abdullah, A. M., Salloum, A. D., 2020. A comparison between the theoretical cross section based on the partial level density formulae calculated by the exciton model with the experimental data for 197Au nucleus. Baghdad Science Journal, 18, 1, 1, 139-143. doi.org/10.21123/Bsj.2021.18.1.0139.
  • Artun, O., 2018. Calculation of productions of PET radioisotopes via phenomenological level density models. Radiation Physics and Chemistry,149,73-83. doi.org/10.1016/j.radphyschem.2018.03.018.
  • Artun, O., 2019. Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Applied Radiation and Isotopes, 144, 64-79. doi.org/10.1016/j.apradiso.2018.11.011.
  • Asres, Y. H.., Mathuthu, M., Beyene, E. Y., 2019. The study of alpha particle induced reactions on bismuth-209 isotopes using computer code COMPLET. Journal of physics communications, 3,11,1-8 doi.org/10.1088/2399-6528/ab51c9.
  • Aydın, A., Pekdogan, H., Kaplan, A., Sarpün, İ. H., Tel, E., Demir, B., 2015. Comparison of level density models for the 60,61,62,64Ni (p, n) reactions of structural fusion material nickel from threshold to 30 MeV. Journal of Fusion Energy, 34(5), 1105-1108. doi: 10.1007/s10894- 015-9927-2.
  • Bethe, H. A., 1937. Nuclear Physics B. Nuclear Dynamics, Theoretical. Revıews of Modern Physıcs, 9, 2 69. doi: 10.1103/RevModPhys.9.69
  • Canbula, B., Bulur, R., Canbula, D., Babacan, H., 2014. A Laplace like formula for the energy dependence of the nuclear level density parameter. Nuclear Physics A, 929, 54-70. doi.org/10.1016/j.nuclphysa.2014.05.020.
  • Canbula, B., 2020. 55Mn izotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24, 138-142. doi: 10.19113/sdufenbed.639828.
  • Dilg, W., Schantl, W., Vonach, H., Uhl, M., 1973. Level density parameters for the back-shifted fermi gas model in the mass range 40<A<250. Nuclear Physics A, 217, 2, 269-298. doi.org/10.1016/0375-9474(73)90196-6.
  • Ditroi, F., Tarkanyi, F., Takacs, S., Hermanne, A., 2017. Extension of activation cross section data of long lived products in deuteron induced nuclear reactions on platinum up to 50 MeV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 401, 56-70 doi.org/10.1016/j.nimb.2017.04.073.
  • Ditroi, F., Tarkanyi, F., Csikai, J., Uddin, M.S., Hagiwara, M., Baba, M., Shubin, Yu.N., Kovalev, S.F., 2006. Excitation functions of long lived products in deuteron induced nuclear reactions on platinum up to 40 MeV. Nuclear Instruments and Methods in Physics Research B, 243, 1, 20- 27. doi.org/10.1016/j.nimb.2005.07.206.
  • Ghergherehchi, M., Afarideh, H., Kim, Y.S., Park, S.Y., Lee, S.B., Shin, D.H., Chai, J.S., Mu, X.J., Lee, B.N., 2012. Dosimetry and microdosimetry of 10-220 MeV proton beams with CR-39 and their verifications by calculation of reaction cross sections using ALICE, TALYS and GEANT4 codes. Radiation Measurements,47,6,410-416. doi.org/10.1016/j.radmeas.2012.03.008.
  • Gilbert A; Cameron A.G.W., 1965. A composite nuclear-level density formula with shell corrections. Canadian Journal of Physics, 43, (8), 1446-1496, doi:10.1139/p65-139.
  • Goriely, S., Tondeur, F., Pearson, J. M., 2001. A Hartree-fock nuclear mass table. Atomic Data and Nuclear Data Tables, 77, 2, 311-381. doi.org/10.1006/adnd.2000.0857.
  • Goriely, S., Hilaire, S., Koning, A. J., 2008. Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Physical Review C, 78,6, 064307. doi.org/10.1103/PhysRevC.78.064307.
  • Hilaire, S., Girod, M., Goriely, S., Koning, A. J., 2012. Temperature-dependent combinatorial level densities with the D1M Gogny force. Physical Review C, 86, 064317. doi.org/10.1103/PhysRevC.86.064317.
  • Hu, H., Guo, W-L., Su, J., Wang, W., Yuan, C., 2022. Implementation of residual nucleus de-excitations associated with proton decays in 12C based on the GENIE generator and TALYS code. Physics Letters B, 831,137183. doi.org./10.1016/j.physletb.2022.137183.
  • Ignatyuk, A. V., Istekov, K. K., Smirenkin, G. N., 1979. Collective effects in level density, and the probability of fission. Yadernaya Fizika, 0044-0027, 30(5), 1205-1218.
  • Ignatyuk, A. V., Weil J. L., Raman, S., Kahane, S., 1993. Density of discrete levels in 116Sn. Physical Review C., 47, (4), 1504.
  • Kaplan, A., Özdoğan, H., Aydin, A., Tel, E. 2014. Photo-neutron cross-section calculations of 142,143,144,145,146,150Nd rare-earth isotopes for (γ,n) reaction. Physics of Atomic Nuclei, 77(11), 1371-1377. doi:10.1134/S1063778814100081.
  • Kaplan, A., Sarpün, İ. H., Aydın, A., Tel, E., Çapalı, V., Özdoǧan, H., 2015. (γ,2n)-Reaction cross- section calculations of several even-even lanthanide nuclei using different level density models. Physics of Atomic Nuclei, 78(1), 53-64. doi: 10.1134/S106377881501010X.
  • Karpuz, N., 2016. Effect of the Level Density Parameter Ratio on the Cross Sections of Fission of Uranium Isotopes. Acta Physica Polonica A, 130, 1, 306-308. doi: 10.12693/APhysPolA.130.306.
  • Karpuz Demir, N., 2017. Detailed Analysis of Differential Cross Sections of Elastic Scattering for n+208Pb Reaction. Acta Physica Polonica A, 132, 3-II, 1189-1191. doi: 10.12693/APhysPolA.132.1189.
  • Kavun, Y., Makwana R., 2020. Study of (γ,p) reaction cross-section calculations of 52Cr, 54Fe, 60Ni and 64Zn isotopes. Nuclear Inst. and Methods in Physics Research B, 472, 72-77. doi:10.1016/j.nimb.2020.03.036.
  • Kavun, Y., Makwana R., 2021. Effects of some level density models and γ-ray strength functions on production cross-section calculations of 16,18O and 24,26Mg radioisotopes. Journal Kerntechnik, 86(6), 411-418. doi:10.1515/kern-2021-1018.
  • Kavun, Y., Parashari S., Tel E., 2020. Investigation of (γ,p) reaction cross-section calculations of 40Ca, 70Ge and 90Zr isotopes. Applied Radiation and Isotopes, 164. doi:10.1016/j.apradiso.2020.109318.
  • Khandaker, M.U., Haba, H., Murakami, M., Otuka, N., Kassim, H.A., 2015. Excitation functions of deuteron-induced nuclear reactions on natural platinum up to 24 MeV. Nuclear Instruments and Methods in Physics Research B, 362, 151-162. doi.org/10.1016/j.nimb.2015.09.045.
  • Koning, A. J., Hilaire, S., Goriely, S., 2008. Global and local level density models, Nuclear Physics A 810, 13-76. doi:10.1016/j.nuclphysa.2008.06.005.
  • Koning, A.J., Hilaire, S., and Goriely, S., 2019. TALYS 1.95 Nuclear Research and Consultancy Group (NRG), The Netherlands.
  • Kulko, A. A., Skobelev, N. K., Kroha, V., Penionzhkevich, Yu. E., Mrazek, J., Burjan, V., Hons, Z., Simeckova, E., Piskor, S., Kugler, A., Demekhina, N. A., Sobolev, Yu. G., Chuvilskaya, T. V., Shirokova, A.A., and Kuterbekov, K., 2012. Excitation functions for deuterium-induced reactions on 194Pt near the coulomb barrier. Physics of Particles and Nuclei Letters, 9, 502, 6-7, doi:10.1134/S154747711206012x.
  • Lilley, J., 2018. Nükleer Fizik İlkeler ve Uygulamalar, (Çeviri Editörü: A. Aydın, İ.H. Sarpün, E. Tel ve A. Kaplan), Nobel Akademik Yayıncılık, Ankara.
  • Noori, S. S., Karpuz, N., Akkurt, İ., 2016. Excitation Functions of (d,n) Reactions on Some Light Nuclei. Acta Physica Polonica A, 129, 1, 484- 486. doi: 10.12693/APhysPolA.130.484.
  • Noori, S. S., Akkurt, İ., Karpuz Demir, N., 2017. Comparison of Excitation Functions of Longer and Shorter Lived Radionuclides. Acta Physica Polonica A, 132, 3-II, 1186-1188. doi: 10.12693/APhysPolA.132.1186.
  • Noori, S. S., Akkurt, İ., Karpuz Demir, N., 2018. Excitation functions of proton induced reactions of some radioisotopes used in medicine. Open Chemistry, 16, 810-816. doi: 10.1515/chem-2018-0085.
  • Noori, S. S., Akkurt, İ., Karpuz Demir, N., 2019. Excitation Functions for the Proton Irradiation on 45Sc Target. International Journal of Computational and Experimental Science and Engineering, 5, 2, 61-64. doi: 10.22399/ijcesen.547000.
  • Özdoğan, H., Şekerci, M., Sarpün, İ. H., Kaplan, A., 2018. Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr. Applied Radiation and Isotopes, 140, 29-34. doi.org/10.1016/j.apradiso.2018.06.013.
  • Sarpün, İ. H., Özdoğan, H., Taşdöven, K., Yalim, H. A., Kaplan, A., 2019. Theoretical photoneutron crosssection calculations on Osmium isotopes by Talys and Empire codes. Modern Physics Letters A, 34(26),1950210. doi.org/10.1142/S0217732319502109.
  • Stoulos, S., Vagena, E., 2018. Indirect measurement of bremsstrahlung photons and photoneutrons cross sections of 204Pb and Sb isotopes compared with TALYS simulations. Nuclear Physics A, 980, 1-14. doi.org/10.1016/j.nuclphysa.2018.09.081.
  • Sudar, S., and Qaim, S. M., 2006. Cross sections for the formation of 195Hgm,g, 197Hgm,g, and 196Aum,g in α and 3He-particle induced reactions on Pt:effect of level density parameters on the calculated isomeric cross-section ratio. Physical Review C, 73(3), 034613. doi.org/10.1103/PhysRevC.73.034613.
  • Sziki, G.A., Simon, A., Szikszai, Z., Kerte´sz, Zs., Dobos, E., 2006. Gamma ray production cross- sections of deuteron induced nuclear reactions for light element analysis. Nuclear Instrumentsand Methods in Physics Research B, 251, 2, 343–351. doi.org/10.1016/j.nimb.2006.07.008.
  • Tarkanyi, F., Takacs, S., Ditroi, F., Hermanne, A.,Shubin, Yu. N., Dityuk, A. I., 2004. Activation cross sections of deuteron induced reactions on platinum. Nuclear Instruments and Methods in Physics Research B, 226, 4, 490-498. doi.org/10.1016/j.nimb.2004.06.043.
  • Tarkanyi, F., Ditroi, F., Takacs, S., Hermanne, A., Ignatyuk, A.V., 2019. Experimental and theoretical cross section data of deuteron induced nuclear reactions on platinum. Journal of Radioanalytical and Nuclear Chemistry, 321, 747. doi:10.1007/s10967-019-06624-4.
  • Tel, E., Akça, S., Sahan, M., Depedelen, M., Sarpün, İ.H., 2016. The comparison of (n,p), (n,α), (n,2n) and (α,n) reaction cross sections for 7Li and 9Be target nuclei, Journal of Fusion Energy, 35(4):709-714, doi.org/10.1007/S10894-016-0094-X.
  • Usman, A. R., Khandaker, M. U., Haba, H., Otuka, N., Murakami, M., 2020. Production cross sections of thulium radioisotopes for alpha-particle induced reactions on holmium. Nuclear Inst. and Methods in Physics Research B, 469, 42-48. doi.org/10.1016/j.nimb.2020.02.036.
  • Usman, A. R., Khandaker, M. U., Haba, H., Otuka, N., Murakami, M., Komori, Y., 2016. Production cross-sections of radionuclides from α-induced reactions on natural copper up to 50 MeV. Applied Radiation and Isotopes, 114, 104-113. doi.org/10.1016/j.apradiso.2016.04.027.
  • Usman, A. R., Khandaker, M. U., Haba, H., Otuka, N., Murakami, M., 2017. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4-50.2 MeV. Nuclear Instruments and Methods in Physics Research B, 399, 34-47. doi.org/10.1016/j.nimb.2017.03.120.
  • Usman, A. R., Khandaker, M. U., Haba, H., Murakami, M., Otuka, N., 2016. Measurements of deuteron-induced reaction cross-sections on natural nickel up to 24 MeV. Nuclear Instruments and Methods in Physics Research B, 368, 112-119. doi.org/10.1016/j.nimb.2015.10.077.
  • Yiğit, M., Tel, E., Sarpün, İ. H., 2016. Excitation function calculations for α + 93Nb nuclear reactions. Nuclear Instruments and Methods in Physics Research B, 385, 59–64. doi.org/10.1016/j.nimb.2016.08.019.
  • Yigit, M., Kara, A., 2017. Model-based predictions for nuclear excitation functions of neutron- induced reactions on 64,66-68Zn targets. Nuclear Engineering and Technology, 49, 5, 996-1005. doi.org/10.1016/j.net.2017.03.006.
  • Vagena, E., ve Stoulos, S., 2017. Average cross section measurement for 162Er (γ,n) reaction compared with theoretical calculations using TALYS. Nuclear Physics A, 957, 259-273. doi.org/10.1016/j.nuclphysa.2016.09.007.
  • http://www.nds.iaea.org/exfor/ (05.03.2022)

Platinyum Element İçin 191-199Au Medikal İzotop Üretim Tesir Kesitlerinin ve Seviye Yoğunluk Modellerinin Etkisinin İncelenmesi

Year 2022, , 1256 - 1270, 28.12.2022
https://doi.org/10.35414/akufemubid.1143137

Abstract

Deneysel çalışmaların yapılamadığı ve bununla birlikte deneysel verilerin bulunmadığı durumlarda, teorik modellerle yapılan çalışmalar, araştırmacıların farklı veriler hakkındaki bilgilerine ışık tutmaktadır. Bu verilerden en önemlisi, bir reaksiyonun oluşma olasılığı olarak tanımlanan ölçülebilir veya hesaplanabilir tesir kesiti değeridir. Tesir kesiti bölümünün hesaplanmasında farklı modellerin olası etkilerinin incelenmesi, bu değerin doğru hesaplanması açısından önemlidir. En önemli veri olan tesir kesiti, radyoizotop dünyasında olduğu gibi nükleer fiziğin birçok alanında da yerini almıştır. Gelişen teknoloji ve ilerleyen bilim ile radyoizotopların yaygın ve çeşitli kullanımları vardır. En yaygın olarak radyoizotoplar medikal tanı ve tedavi uygulamalarında kullanılmaktadır. Bu amaçla kullanılan birçok radyoizotop arasında 191-199Au radyoizotopları da tıbbi uygulamalarda hem yararları hem de özellikleri açısından önemlidir. Bu bağlamda çalışmada, 191-199Au radyoizotoplarının üretim tesir kesit hesaplamalarında farklı nükleer seviye yoğunluk modellerinin etkilerinin döteron referansı ile araştırılması amaçlanmıştır. TALYS kodunun kullanıldığı teorik kesitler tüm izotoplar için simüle edilmiştir. Elde edilen hesaplamaların sonuçları birbirleri ve literatürdeki deneysel verilerle karşılaştırılmış ve incelenen reaksiyon durumlarına göre en uyumlu seviye yoğunluk modellerinin belirlenmesi amaçlanmıştır.

References

  • Abdullah, A. M., Salloum, A. D., 2020. A comparison between the theoretical cross section based on the partial level density formulae calculated by the exciton model with the experimental data for 197Au nucleus. Baghdad Science Journal, 18, 1, 1, 139-143. doi.org/10.21123/Bsj.2021.18.1.0139.
  • Artun, O., 2018. Calculation of productions of PET radioisotopes via phenomenological level density models. Radiation Physics and Chemistry,149,73-83. doi.org/10.1016/j.radphyschem.2018.03.018.
  • Artun, O., 2019. Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Applied Radiation and Isotopes, 144, 64-79. doi.org/10.1016/j.apradiso.2018.11.011.
  • Asres, Y. H.., Mathuthu, M., Beyene, E. Y., 2019. The study of alpha particle induced reactions on bismuth-209 isotopes using computer code COMPLET. Journal of physics communications, 3,11,1-8 doi.org/10.1088/2399-6528/ab51c9.
  • Aydın, A., Pekdogan, H., Kaplan, A., Sarpün, İ. H., Tel, E., Demir, B., 2015. Comparison of level density models for the 60,61,62,64Ni (p, n) reactions of structural fusion material nickel from threshold to 30 MeV. Journal of Fusion Energy, 34(5), 1105-1108. doi: 10.1007/s10894- 015-9927-2.
  • Bethe, H. A., 1937. Nuclear Physics B. Nuclear Dynamics, Theoretical. Revıews of Modern Physıcs, 9, 2 69. doi: 10.1103/RevModPhys.9.69
  • Canbula, B., Bulur, R., Canbula, D., Babacan, H., 2014. A Laplace like formula for the energy dependence of the nuclear level density parameter. Nuclear Physics A, 929, 54-70. doi.org/10.1016/j.nuclphysa.2014.05.020.
  • Canbula, B., 2020. 55Mn izotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24, 138-142. doi: 10.19113/sdufenbed.639828.
  • Dilg, W., Schantl, W., Vonach, H., Uhl, M., 1973. Level density parameters for the back-shifted fermi gas model in the mass range 40<A<250. Nuclear Physics A, 217, 2, 269-298. doi.org/10.1016/0375-9474(73)90196-6.
  • Ditroi, F., Tarkanyi, F., Takacs, S., Hermanne, A., 2017. Extension of activation cross section data of long lived products in deuteron induced nuclear reactions on platinum up to 50 MeV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 401, 56-70 doi.org/10.1016/j.nimb.2017.04.073.
  • Ditroi, F., Tarkanyi, F., Csikai, J., Uddin, M.S., Hagiwara, M., Baba, M., Shubin, Yu.N., Kovalev, S.F., 2006. Excitation functions of long lived products in deuteron induced nuclear reactions on platinum up to 40 MeV. Nuclear Instruments and Methods in Physics Research B, 243, 1, 20- 27. doi.org/10.1016/j.nimb.2005.07.206.
  • Ghergherehchi, M., Afarideh, H., Kim, Y.S., Park, S.Y., Lee, S.B., Shin, D.H., Chai, J.S., Mu, X.J., Lee, B.N., 2012. Dosimetry and microdosimetry of 10-220 MeV proton beams with CR-39 and their verifications by calculation of reaction cross sections using ALICE, TALYS and GEANT4 codes. Radiation Measurements,47,6,410-416. doi.org/10.1016/j.radmeas.2012.03.008.
  • Gilbert A; Cameron A.G.W., 1965. A composite nuclear-level density formula with shell corrections. Canadian Journal of Physics, 43, (8), 1446-1496, doi:10.1139/p65-139.
  • Goriely, S., Tondeur, F., Pearson, J. M., 2001. A Hartree-fock nuclear mass table. Atomic Data and Nuclear Data Tables, 77, 2, 311-381. doi.org/10.1006/adnd.2000.0857.
  • Goriely, S., Hilaire, S., Koning, A. J., 2008. Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Physical Review C, 78,6, 064307. doi.org/10.1103/PhysRevC.78.064307.
  • Hilaire, S., Girod, M., Goriely, S., Koning, A. J., 2012. Temperature-dependent combinatorial level densities with the D1M Gogny force. Physical Review C, 86, 064317. doi.org/10.1103/PhysRevC.86.064317.
  • Hu, H., Guo, W-L., Su, J., Wang, W., Yuan, C., 2022. Implementation of residual nucleus de-excitations associated with proton decays in 12C based on the GENIE generator and TALYS code. Physics Letters B, 831,137183. doi.org./10.1016/j.physletb.2022.137183.
  • Ignatyuk, A. V., Istekov, K. K., Smirenkin, G. N., 1979. Collective effects in level density, and the probability of fission. Yadernaya Fizika, 0044-0027, 30(5), 1205-1218.
  • Ignatyuk, A. V., Weil J. L., Raman, S., Kahane, S., 1993. Density of discrete levels in 116Sn. Physical Review C., 47, (4), 1504.
  • Kaplan, A., Özdoğan, H., Aydin, A., Tel, E. 2014. Photo-neutron cross-section calculations of 142,143,144,145,146,150Nd rare-earth isotopes for (γ,n) reaction. Physics of Atomic Nuclei, 77(11), 1371-1377. doi:10.1134/S1063778814100081.
  • Kaplan, A., Sarpün, İ. H., Aydın, A., Tel, E., Çapalı, V., Özdoǧan, H., 2015. (γ,2n)-Reaction cross- section calculations of several even-even lanthanide nuclei using different level density models. Physics of Atomic Nuclei, 78(1), 53-64. doi: 10.1134/S106377881501010X.
  • Karpuz, N., 2016. Effect of the Level Density Parameter Ratio on the Cross Sections of Fission of Uranium Isotopes. Acta Physica Polonica A, 130, 1, 306-308. doi: 10.12693/APhysPolA.130.306.
  • Karpuz Demir, N., 2017. Detailed Analysis of Differential Cross Sections of Elastic Scattering for n+208Pb Reaction. Acta Physica Polonica A, 132, 3-II, 1189-1191. doi: 10.12693/APhysPolA.132.1189.
  • Kavun, Y., Makwana R., 2020. Study of (γ,p) reaction cross-section calculations of 52Cr, 54Fe, 60Ni and 64Zn isotopes. Nuclear Inst. and Methods in Physics Research B, 472, 72-77. doi:10.1016/j.nimb.2020.03.036.
  • Kavun, Y., Makwana R., 2021. Effects of some level density models and γ-ray strength functions on production cross-section calculations of 16,18O and 24,26Mg radioisotopes. Journal Kerntechnik, 86(6), 411-418. doi:10.1515/kern-2021-1018.
  • Kavun, Y., Parashari S., Tel E., 2020. Investigation of (γ,p) reaction cross-section calculations of 40Ca, 70Ge and 90Zr isotopes. Applied Radiation and Isotopes, 164. doi:10.1016/j.apradiso.2020.109318.
  • Khandaker, M.U., Haba, H., Murakami, M., Otuka, N., Kassim, H.A., 2015. Excitation functions of deuteron-induced nuclear reactions on natural platinum up to 24 MeV. Nuclear Instruments and Methods in Physics Research B, 362, 151-162. doi.org/10.1016/j.nimb.2015.09.045.
  • Koning, A. J., Hilaire, S., Goriely, S., 2008. Global and local level density models, Nuclear Physics A 810, 13-76. doi:10.1016/j.nuclphysa.2008.06.005.
  • Koning, A.J., Hilaire, S., and Goriely, S., 2019. TALYS 1.95 Nuclear Research and Consultancy Group (NRG), The Netherlands.
  • Kulko, A. A., Skobelev, N. K., Kroha, V., Penionzhkevich, Yu. E., Mrazek, J., Burjan, V., Hons, Z., Simeckova, E., Piskor, S., Kugler, A., Demekhina, N. A., Sobolev, Yu. G., Chuvilskaya, T. V., Shirokova, A.A., and Kuterbekov, K., 2012. Excitation functions for deuterium-induced reactions on 194Pt near the coulomb barrier. Physics of Particles and Nuclei Letters, 9, 502, 6-7, doi:10.1134/S154747711206012x.
  • Lilley, J., 2018. Nükleer Fizik İlkeler ve Uygulamalar, (Çeviri Editörü: A. Aydın, İ.H. Sarpün, E. Tel ve A. Kaplan), Nobel Akademik Yayıncılık, Ankara.
  • Noori, S. S., Karpuz, N., Akkurt, İ., 2016. Excitation Functions of (d,n) Reactions on Some Light Nuclei. Acta Physica Polonica A, 129, 1, 484- 486. doi: 10.12693/APhysPolA.130.484.
  • Noori, S. S., Akkurt, İ., Karpuz Demir, N., 2017. Comparison of Excitation Functions of Longer and Shorter Lived Radionuclides. Acta Physica Polonica A, 132, 3-II, 1186-1188. doi: 10.12693/APhysPolA.132.1186.
  • Noori, S. S., Akkurt, İ., Karpuz Demir, N., 2018. Excitation functions of proton induced reactions of some radioisotopes used in medicine. Open Chemistry, 16, 810-816. doi: 10.1515/chem-2018-0085.
  • Noori, S. S., Akkurt, İ., Karpuz Demir, N., 2019. Excitation Functions for the Proton Irradiation on 45Sc Target. International Journal of Computational and Experimental Science and Engineering, 5, 2, 61-64. doi: 10.22399/ijcesen.547000.
  • Özdoğan, H., Şekerci, M., Sarpün, İ. H., Kaplan, A., 2018. Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr. Applied Radiation and Isotopes, 140, 29-34. doi.org/10.1016/j.apradiso.2018.06.013.
  • Sarpün, İ. H., Özdoğan, H., Taşdöven, K., Yalim, H. A., Kaplan, A., 2019. Theoretical photoneutron crosssection calculations on Osmium isotopes by Talys and Empire codes. Modern Physics Letters A, 34(26),1950210. doi.org/10.1142/S0217732319502109.
  • Stoulos, S., Vagena, E., 2018. Indirect measurement of bremsstrahlung photons and photoneutrons cross sections of 204Pb and Sb isotopes compared with TALYS simulations. Nuclear Physics A, 980, 1-14. doi.org/10.1016/j.nuclphysa.2018.09.081.
  • Sudar, S., and Qaim, S. M., 2006. Cross sections for the formation of 195Hgm,g, 197Hgm,g, and 196Aum,g in α and 3He-particle induced reactions on Pt:effect of level density parameters on the calculated isomeric cross-section ratio. Physical Review C, 73(3), 034613. doi.org/10.1103/PhysRevC.73.034613.
  • Sziki, G.A., Simon, A., Szikszai, Z., Kerte´sz, Zs., Dobos, E., 2006. Gamma ray production cross- sections of deuteron induced nuclear reactions for light element analysis. Nuclear Instrumentsand Methods in Physics Research B, 251, 2, 343–351. doi.org/10.1016/j.nimb.2006.07.008.
  • Tarkanyi, F., Takacs, S., Ditroi, F., Hermanne, A.,Shubin, Yu. N., Dityuk, A. I., 2004. Activation cross sections of deuteron induced reactions on platinum. Nuclear Instruments and Methods in Physics Research B, 226, 4, 490-498. doi.org/10.1016/j.nimb.2004.06.043.
  • Tarkanyi, F., Ditroi, F., Takacs, S., Hermanne, A., Ignatyuk, A.V., 2019. Experimental and theoretical cross section data of deuteron induced nuclear reactions on platinum. Journal of Radioanalytical and Nuclear Chemistry, 321, 747. doi:10.1007/s10967-019-06624-4.
  • Tel, E., Akça, S., Sahan, M., Depedelen, M., Sarpün, İ.H., 2016. The comparison of (n,p), (n,α), (n,2n) and (α,n) reaction cross sections for 7Li and 9Be target nuclei, Journal of Fusion Energy, 35(4):709-714, doi.org/10.1007/S10894-016-0094-X.
  • Usman, A. R., Khandaker, M. U., Haba, H., Otuka, N., Murakami, M., 2020. Production cross sections of thulium radioisotopes for alpha-particle induced reactions on holmium. Nuclear Inst. and Methods in Physics Research B, 469, 42-48. doi.org/10.1016/j.nimb.2020.02.036.
  • Usman, A. R., Khandaker, M. U., Haba, H., Otuka, N., Murakami, M., Komori, Y., 2016. Production cross-sections of radionuclides from α-induced reactions on natural copper up to 50 MeV. Applied Radiation and Isotopes, 114, 104-113. doi.org/10.1016/j.apradiso.2016.04.027.
  • Usman, A. R., Khandaker, M. U., Haba, H., Otuka, N., Murakami, M., 2017. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4-50.2 MeV. Nuclear Instruments and Methods in Physics Research B, 399, 34-47. doi.org/10.1016/j.nimb.2017.03.120.
  • Usman, A. R., Khandaker, M. U., Haba, H., Murakami, M., Otuka, N., 2016. Measurements of deuteron-induced reaction cross-sections on natural nickel up to 24 MeV. Nuclear Instruments and Methods in Physics Research B, 368, 112-119. doi.org/10.1016/j.nimb.2015.10.077.
  • Yiğit, M., Tel, E., Sarpün, İ. H., 2016. Excitation function calculations for α + 93Nb nuclear reactions. Nuclear Instruments and Methods in Physics Research B, 385, 59–64. doi.org/10.1016/j.nimb.2016.08.019.
  • Yigit, M., Kara, A., 2017. Model-based predictions for nuclear excitation functions of neutron- induced reactions on 64,66-68Zn targets. Nuclear Engineering and Technology, 49, 5, 996-1005. doi.org/10.1016/j.net.2017.03.006.
  • Vagena, E., ve Stoulos, S., 2017. Average cross section measurement for 162Er (γ,n) reaction compared with theoretical calculations using TALYS. Nuclear Physics A, 957, 259-273. doi.org/10.1016/j.nuclphysa.2016.09.007.
  • http://www.nds.iaea.org/exfor/ (05.03.2022)
There are 51 citations in total.

Details

Primary Language English
Subjects Nuclear Physics
Journal Section Articles
Authors

Nurdan Karpuz Demir 0000-0003-4911-8846

Publication Date December 28, 2022
Submission Date July 11, 2022
Published in Issue Year 2022

Cite

APA Karpuz Demir, N. (2022). Investigation of the Cross Sections and Effect of Level Density Models for Platinum Element. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(6), 1256-1270. https://doi.org/10.35414/akufemubid.1143137
AMA Karpuz Demir N. Investigation of the Cross Sections and Effect of Level Density Models for Platinum Element. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2022;22(6):1256-1270. doi:10.35414/akufemubid.1143137
Chicago Karpuz Demir, Nurdan. “Investigation of the Cross Sections and Effect of Level Density Models for Platinum Element”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 6 (December 2022): 1256-70. https://doi.org/10.35414/akufemubid.1143137.
EndNote Karpuz Demir N (December 1, 2022) Investigation of the Cross Sections and Effect of Level Density Models for Platinum Element. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 6 1256–1270.
IEEE N. Karpuz Demir, “Investigation of the Cross Sections and Effect of Level Density Models for Platinum Element”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 6, pp. 1256–1270, 2022, doi: 10.35414/akufemubid.1143137.
ISNAD Karpuz Demir, Nurdan. “Investigation of the Cross Sections and Effect of Level Density Models for Platinum Element”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/6 (December 2022), 1256-1270. https://doi.org/10.35414/akufemubid.1143137.
JAMA Karpuz Demir N. Investigation of the Cross Sections and Effect of Level Density Models for Platinum Element. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:1256–1270.
MLA Karpuz Demir, Nurdan. “Investigation of the Cross Sections and Effect of Level Density Models for Platinum Element”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 6, 2022, pp. 1256-70, doi:10.35414/akufemubid.1143137.
Vancouver Karpuz Demir N. Investigation of the Cross Sections and Effect of Level Density Models for Platinum Element. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(6):1256-70.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.