Research Article
BibTex RIS Cite

Yerinde Erken Yaş Beton Dayanımını Belirlemek İçin Kombine Metotların Geliştirilmesi

Year 2022, , 1400 - 1412, 28.12.2022
https://doi.org/10.35414/akufemubid.1147118

Abstract

Bu çalışma, yerinde erken yaş beton dayanımını yüksek doğrulukla tespit etmek için kombine metotlar geliştirmek ve geliştirilen modelleri uygulama yapısı üzerinde test edilmesini amaçlamaktadır. Bu amaçla, Elazığ-Malatya İlleri arasında 2016-2020 yılları arasında inşa edilen Yeni Kömürhan Köprüsünün pilon betonlarından, tahribatsız test metodu ölçümleri ve beton numuneler alınmıştır. Elde edilen ölçüm ve numunelerin test sonuçları kullanılarak tepki yüzeyi metodu (RSM) yardımıyla matematiksel modeller geliştirilmiştir. Geliştirilen matematiksel modeller esas alınarak tahribatsız test metotlarının ikili kullanımlarıyla üç farklı kombine metot geliştirilmiştir. Yapılan bu çalışma sonucunda, geliştirilen kombine metotlar, kömürhan köprüsü pilon betonlarının yerinde erken yaş beton dayanımını test etmek için kullanılmıştır. Pilonların 3 ve 7 günlük basınç dayanımları, geliştirilen kombine metotlarla tahmin edilmiştir. Bu tahminler sonucunda, ikili kombine metotların iyi sonuçlar verdiği görülmüştür. Geliştirilen kombine metotlar, Kömürhan köprüsü gibi büyük ve prestijli bir yapıda test edilmiş, yerinde erken yaş beton dayanımını yüksek doğrulukla tahmin ettikleri görülmüştür. Böylece, kombine metotların büyük ve prestijli yapılarda kullanımının önemli miktarda maliyet kazancı, kalıp alma süresinden kaynaklı zaman tasarrufu ve iş gücü kazancı sağlayacağı düşünülmektedir

References

  • Abrams, D. A. (1927). Water-cement ratio as a basis of concrete quality. Journal Proceedings, 23(2), 452–457.
  • Alyamac, K. E., Ghafari, E., & Ince, R. (2017). Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. Journal of Cleaner Production, 144, 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156
  • Alyamac, K. E., Yavuzhan, T. A. S., ULUCAN, Z. C., & ULAS, M. A. (2018). Estimation of concrete strength combining rebound hammer and Windsor probe test methods.
  • ASTM, C. (1998). 1074,“. Standard Practice for Estimating Concrete Strength by the Maturity Method,” ASTM International, West Conshohocken, Pa.
  • ASTM, C. (1999). 803. Standard Test Method for Penetration Resistance of Hardened Concrete. Annual Book of ASTM Standards.
  • Bogas, J. A., & Gomes, A. (2013). Compressive behavior and failure modes of structural lightweight aggregate concrete–Characterization and strength prediction. Materials & Design, 46, 832–841.
  • C597-97, A. (1997). Standard Test Method for Pulse Velocity Through Concrete.
  • Demir, T., Ulucan, M., & Alyamac, K. E. (2022). Determination of Early Age Strength of High Strength Concretes Using RSM Method. Fırat University Journal of Engineering Science, 34(1), 105–114. https://doi.org/10.35234/fumbd.972829
  • El-Housseiny, G. S., Aboshanab, K. M., Aboulwafa, M. M., & Hassouna, N. A. (2019). Rhamnolipid production by a gamma ray-induced Pseudomonas aeruginosa mutant under solid state fermentation. AMB Express, 9(1), 1–11.
  • Fodil, N., Chemrouk, M., & Ammar, A. (2021). Influence of steel reinforcement on ultrasonic pulse velocity as a non-destructive evaluation of high-performance concrete strength. European Journal of Environmental and Civil Engineering, 25(2), 281–301.
  • Giannini, R., Sguerri, L., Paolacci, F., & Alessandri, S. (2014). Assessment of concrete strength combining direct and NDT measures via Bayesian inference. Engineering Structures, 64, 68–77.
  • Hammoudi, A., Moussaceb, K., Belebchouche, C., & Dahmoune, F. (2019). Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Construction and Building Materials, 209, 425–436. https://doi.org/10.1016/j.conbuildmat.2019.03.119
  • Jones, R. (1962). Non destructive testing of concrete. University Press.
  • Kabay, N., & Aköz, F. (2020). Investıgatıon of factors affectıng core compressıve strength and non-destructıve testıng of concrete. Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi, 38(1).
  • Kheder, G. F. (1999). A two stage procedure for assessment of in situ concrete strength using combined non-destructive testing. Materials and Structures, 32(6), 410–417. Kocamaz, A. F., Ayaz, Y., Karakoç, M. B., Türkmen, İ., & Demirboğa, R. (2021). Prediction of compressive strength and ultrasonic pulse velocity of admixtured concrete using tree model M5P. Structural Concrete, 22, E800–E814. https://doi.org/https://doi.org/10.1002/suco.202000061
  • Kolek, J. (1958). An appreciation of the Schmidt rebound hammer. Magazine of Concrete Research, 10(28), 27–36.
  • Lee, S., & Kalos, N. (2014). Non-destructive testing methods in the US for bridge inspection and maintenance. KSCE Journal of Civil Engineering, 18(5), 1322–1331.
  • Lim, M. K., & Cao, H. (2013). Combining multiple NDT methods to improve testing effectiveness. Construction and Building Materials, 38, 1310–1315.
  • Malhotra, V. M. (1976). Testing hardened concrete: nondestructive methods (Issue 9). Iowa State Press.
  • Malhotra, V. M. (1984). In situ/nondestructive testing of concrete. ACI SP-82, 831.
  • Meininger, R. C., Wagner, F. T., & Hall, K. W. (1977). Concrete core strength—The effect of length to diameter ratio. Journal of Testing and Evaluation, 5(3), 147–153.
  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
  • Saul, A. G. A. (1951). Principles underlying the steam curing of concrete at atmospheric pressure. Magazine of Concrete Research, 2(6), 127–140. Swamy, R. N., & Al-Hamed, A. H. (1984). The use of pulse velocity measurements to estimate strength of air-dried cubes and hence in situ strength of concrete. Special Publication, 82, 247–276.
  • Voellmy, A. (1954). Examination of Concrete by Measurements of superficial Hardness. Proc. Int. Symp. on Non-Destructive Testing of Materials and Structures, RILEM Paris, 2, 323

Development of Combined Methods to Estimate Early Age Concrete Strength In-place Using Non-destructive Test Methods: Example of The Kömürhan Bridge

Year 2022, , 1400 - 1412, 28.12.2022
https://doi.org/10.35414/akufemubid.1147118

Abstract

This study aims to develop combined methods to determine the in-place early age concrete strength with high accuracy and test the developed models on the application structure. For this purpose, non-destructive test method measurements and concrete samples were taken from the pylon concretes of the New Kömürhan Bridge built between Elazig-Malatya Provinces among 2016-2020. Mathematical models are developed with the help of the response surface method (RSM) using the samples' obtained non-destructive test measurements and strength results. Based on the developed mathematical models, three different combined methods have been developed with double use of non-destructive test methods. As a result of this study, the combined methods developed were used to test the in-place early age concrete strength of the Kömürhan Bridge pylons. The compressive strengths of these pylons for 3 and 7 days have been estimated with the combined methods developed. As a result of these estimates, it was seen that the double combined methods gave good results. The combined methods developed have been tested in a large and prestigious building such as the Kömürhan Bridge, and it has been seen that they predict the in-place early age concrete strength with high accuracy. Thus, it has been understood that the use of combined methods in large and prestigious buildings will provide significant cost savings, time savings due to formwork stripping times and labor gain.

References

  • Abrams, D. A. (1927). Water-cement ratio as a basis of concrete quality. Journal Proceedings, 23(2), 452–457.
  • Alyamac, K. E., Ghafari, E., & Ince, R. (2017). Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. Journal of Cleaner Production, 144, 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156
  • Alyamac, K. E., Yavuzhan, T. A. S., ULUCAN, Z. C., & ULAS, M. A. (2018). Estimation of concrete strength combining rebound hammer and Windsor probe test methods.
  • ASTM, C. (1998). 1074,“. Standard Practice for Estimating Concrete Strength by the Maturity Method,” ASTM International, West Conshohocken, Pa.
  • ASTM, C. (1999). 803. Standard Test Method for Penetration Resistance of Hardened Concrete. Annual Book of ASTM Standards.
  • Bogas, J. A., & Gomes, A. (2013). Compressive behavior and failure modes of structural lightweight aggregate concrete–Characterization and strength prediction. Materials & Design, 46, 832–841.
  • C597-97, A. (1997). Standard Test Method for Pulse Velocity Through Concrete.
  • Demir, T., Ulucan, M., & Alyamac, K. E. (2022). Determination of Early Age Strength of High Strength Concretes Using RSM Method. Fırat University Journal of Engineering Science, 34(1), 105–114. https://doi.org/10.35234/fumbd.972829
  • El-Housseiny, G. S., Aboshanab, K. M., Aboulwafa, M. M., & Hassouna, N. A. (2019). Rhamnolipid production by a gamma ray-induced Pseudomonas aeruginosa mutant under solid state fermentation. AMB Express, 9(1), 1–11.
  • Fodil, N., Chemrouk, M., & Ammar, A. (2021). Influence of steel reinforcement on ultrasonic pulse velocity as a non-destructive evaluation of high-performance concrete strength. European Journal of Environmental and Civil Engineering, 25(2), 281–301.
  • Giannini, R., Sguerri, L., Paolacci, F., & Alessandri, S. (2014). Assessment of concrete strength combining direct and NDT measures via Bayesian inference. Engineering Structures, 64, 68–77.
  • Hammoudi, A., Moussaceb, K., Belebchouche, C., & Dahmoune, F. (2019). Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Construction and Building Materials, 209, 425–436. https://doi.org/10.1016/j.conbuildmat.2019.03.119
  • Jones, R. (1962). Non destructive testing of concrete. University Press.
  • Kabay, N., & Aköz, F. (2020). Investıgatıon of factors affectıng core compressıve strength and non-destructıve testıng of concrete. Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi, 38(1).
  • Kheder, G. F. (1999). A two stage procedure for assessment of in situ concrete strength using combined non-destructive testing. Materials and Structures, 32(6), 410–417. Kocamaz, A. F., Ayaz, Y., Karakoç, M. B., Türkmen, İ., & Demirboğa, R. (2021). Prediction of compressive strength and ultrasonic pulse velocity of admixtured concrete using tree model M5P. Structural Concrete, 22, E800–E814. https://doi.org/https://doi.org/10.1002/suco.202000061
  • Kolek, J. (1958). An appreciation of the Schmidt rebound hammer. Magazine of Concrete Research, 10(28), 27–36.
  • Lee, S., & Kalos, N. (2014). Non-destructive testing methods in the US for bridge inspection and maintenance. KSCE Journal of Civil Engineering, 18(5), 1322–1331.
  • Lim, M. K., & Cao, H. (2013). Combining multiple NDT methods to improve testing effectiveness. Construction and Building Materials, 38, 1310–1315.
  • Malhotra, V. M. (1976). Testing hardened concrete: nondestructive methods (Issue 9). Iowa State Press.
  • Malhotra, V. M. (1984). In situ/nondestructive testing of concrete. ACI SP-82, 831.
  • Meininger, R. C., Wagner, F. T., & Hall, K. W. (1977). Concrete core strength—The effect of length to diameter ratio. Journal of Testing and Evaluation, 5(3), 147–153.
  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
  • Saul, A. G. A. (1951). Principles underlying the steam curing of concrete at atmospheric pressure. Magazine of Concrete Research, 2(6), 127–140. Swamy, R. N., & Al-Hamed, A. H. (1984). The use of pulse velocity measurements to estimate strength of air-dried cubes and hence in situ strength of concrete. Special Publication, 82, 247–276.
  • Voellmy, A. (1954). Examination of Concrete by Measurements of superficial Hardness. Proc. Int. Symp. on Non-Destructive Testing of Materials and Structures, RILEM Paris, 2, 323
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Yavuzhan Taş 0000-0002-8185-9516

Muhammed Ulucan 0000-0001-7629-6846

Kürşat Esat Alyamaç 0000-0002-3226-4073

Publication Date December 28, 2022
Submission Date July 22, 2022
Published in Issue Year 2022

Cite

APA Taş, Y., Ulucan, M., & Alyamaç, K. E. (2022). Yerinde Erken Yaş Beton Dayanımını Belirlemek İçin Kombine Metotların Geliştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(6), 1400-1412. https://doi.org/10.35414/akufemubid.1147118
AMA Taş Y, Ulucan M, Alyamaç KE. Yerinde Erken Yaş Beton Dayanımını Belirlemek İçin Kombine Metotların Geliştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2022;22(6):1400-1412. doi:10.35414/akufemubid.1147118
Chicago Taş, Yavuzhan, Muhammed Ulucan, and Kürşat Esat Alyamaç. “Yerinde Erken Yaş Beton Dayanımını Belirlemek İçin Kombine Metotların Geliştirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 6 (December 2022): 1400-1412. https://doi.org/10.35414/akufemubid.1147118.
EndNote Taş Y, Ulucan M, Alyamaç KE (December 1, 2022) Yerinde Erken Yaş Beton Dayanımını Belirlemek İçin Kombine Metotların Geliştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 6 1400–1412.
IEEE Y. Taş, M. Ulucan, and K. E. Alyamaç, “Yerinde Erken Yaş Beton Dayanımını Belirlemek İçin Kombine Metotların Geliştirilmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 6, pp. 1400–1412, 2022, doi: 10.35414/akufemubid.1147118.
ISNAD Taş, Yavuzhan et al. “Yerinde Erken Yaş Beton Dayanımını Belirlemek İçin Kombine Metotların Geliştirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/6 (December 2022), 1400-1412. https://doi.org/10.35414/akufemubid.1147118.
JAMA Taş Y, Ulucan M, Alyamaç KE. Yerinde Erken Yaş Beton Dayanımını Belirlemek İçin Kombine Metotların Geliştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:1400–1412.
MLA Taş, Yavuzhan et al. “Yerinde Erken Yaş Beton Dayanımını Belirlemek İçin Kombine Metotların Geliştirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 6, 2022, pp. 1400-12, doi:10.35414/akufemubid.1147118.
Vancouver Taş Y, Ulucan M, Alyamaç KE. Yerinde Erken Yaş Beton Dayanımını Belirlemek İçin Kombine Metotların Geliştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(6):1400-12.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.