Research Article
BibTex RIS Cite

Atmosferik Ortamda Schiff Bazı Pd(II) Kompleksi ile CO2’nin Kimyasal Dönüşümü

Year 2022, , 1290 - 1298, 28.12.2022
https://doi.org/10.35414/akufemubid.1148214

Abstract

Karbon dioksit (CO2) küresel ısınmaya sebep olan başlıca sera gazı olarak kabul edilmektedir. CO2 bol bulunan, ucuz, yanmaz ve toksik olmayan özelliği ile organik sentezlerde karbon kaynağı (C1) olarak dikkat çekmektedir. Ancak CO2 'nin kinetik olarak eylemsiz olma durumu ve termodinamik kararlılık sebebiyle verimli bir şekilde kullanımı zordur. Bu nedenle kimya endüstrisinde CO2 kullanımı sınırlanmaktadır. Bu zorluk etkili ve seçici bir katalizör yardımı ile giderilebilmektedir. CO2’nin formik asit, metan, metanol, amid, karbonat vb. gibi değerli kimyasallara başarılı bir şekilde dönüşümü bilinmektedir. Bu dönüşümler içerisinde özellikle CO2 ve epoksitlerin siklokatılma ile halkalı karbonat sentezi en umut verici olanlarından biri olarak kabul edilmektedir. Bu çalışmada, Schiff bazı ligand ve Pd(II) kompleks sentezi gerçekleştirildi. Bileşiğin yapısı elementel analiz, NMR (1H ve 13C) spektroskopisi, FT-IR spektroskopisi ve UV–vis spektroskopisi yöntemleri ile aydınlatıldı. Daha sonra CO2’nin epiklorhidrin ile halkalı karbonata dönüşümünde Schiff bazı Pd(II) bileşiği katalizör olarak kullanılarak hem atmosferik ortamda hemde reaktör ortamında etkinlikleri araştırıldı. Schiff bazı Pd(II) katalizörünün her iki ortamda da dönüşüme etkisi incelendi.

References

  • Aida, T. and Inoue, S., 1983. Metal-ligand complexes and related methods of chemical CO2 fixation. Journal of the American Chemical Society, 105, 1304-1309.
  • Aida, T., Ishikawa, M. and Inoue, S., 1986. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight. Macromolecules, 19, 8-13.
  • Aytar, E., 2022. Atmosferik basınçta imidazolyum tuzları ile CO2’nin halkalı karbonatlara dönüşümü. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12, 3, 923-935.
  • Aytar, E., 2013. İyonik sivilar ve NN tipi Zn-katalizörleri varliğinda CO2’in organik ürünlere dönüşümü. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, 127.
  • Aytar, E., 2019. Konjuge NN kompleks bileşikleri ve katalitik uygulamaları. Doktora Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, 156.
  • Aytar, E., Hartavi, S. and Kasım, V., 2022. Trimetil Anilin Temelinde Yeni Sterik Engelli Salisilaldiminlerin Cu(II) ve Pd(II) Komplekslerinin Sentezi ve Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Accepted).
  • Barthel, A., Saih, Y., Gimenez, M., Pelletier, J. D., Kühn, F.E., D'elia, V.and Basset, J.M., 2016. Highly integrated CO2 capture and conversion: direct synthesis of cyclic carbonates from industrial flue gas. Green Chemistry, 18, 10, 3116-3123.
  • Buttner, H., Lau, K., Spannenberg, A. and Werner, T., 2015. Bifunctional one‐component catalysts for the addition of carbon dioxide to epoxides. ChemCatChem, 7, 459–467.
  • Cokoja, M., Wilhelm, M.E., Anthofer, M.H., Herrmann, W. A. and Kühn, F.E., 2015. Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. Chemistry sustainability energy materials, 8, 15, 2436-2454.
  • Comerford, J.W., Ingram, I.D.V., North, M. and Wu, X., 2015. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chemistry, 17, 1966–1987.
  • Dirisio, R.J., Armstrong, J.E., Frank, M.A., Lake, W.R., McNamara, W.R., 2017. Cobalt Schiff-base complexes for electrocatalytic hydrogen generation. Dalton Transactions, 46, 10418-10425.
  • Fessenden, R.J. and Fessenden, J.S., 1990. Organik Kimya. Tahsin Uyar, Güneş Kitabevi, 16-192.
  • Field, L.D., Shaw, W.J. and Turner, P., 2002. Functionalisation of Carbon Dioxide by an Iron(II) Complex. Chemical Communications, 1, 46-47.
  • Fiorani, G., Guo, W. and Kleij, A.W., 2015. Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chemistry, 17, 3, 1375-1389.
  • Fourier, J., 1824. Remarques Generales sur les Temperatures Du Globe Terrestre et des Espaces Planetaires. Annales de Chemie et de Physique, 27, 136–67.
  • Hartavi, S., 2019. Trimetil anilinler temelinde yeni sterik engelli salisilaldiminlerin Cu (II) ve Pd (II) komplekslerinin sentezi ve karakterizasyonu. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, 53.
  • Jung, J.H., Ree, M. and Chang, T., 1999. Copolymerization of Carbon Dioxide and Propylene Oxide Using An Aluminum Porphyrin System and Its Components. Journal of Polymer Science Part A: Polymer Chemistry, 37, 3329-3336.
  • Kılıç, A., Durgun, M., Aytar, E. and Yavuz R., 2018. The synthesis and investigation of different cobaloximines by spectroscopic methods. Journal of Organometallic Chemistry, 858, 78–88.
  • Letcher, T.M., 2016. Climate change: observed impacts on planet earth 2nd ed. Oxford, Elsevier, 2–21, 21–340.
  • Lu, X. B. and Darensbourg, D.J., 2012. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chemical Sociecty Reviews, 41, 1462–1484.
  • Luo, R., Zhang, W., Yang, Z., Zhou, X. and Ji, H., 2017. Synthesis of cyclic carbonates from epoxides over bifunctional salen aluminum oligomers as a CO2-philic catalyst: Catalytic and kinetic investigation. Journal of CO2 Utilization, 19, 257–265.
  • Martin, C., Fiorani, G. and Kleij, A.W., 2015. Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catalysis, 5, 1353–1370.
  • Mirabaud, A., Martinez, A., Bayard, F., Dutasta, J.P. and Dufaud, V., 2018. A new heterogeneous host–guest catalytic system as an eco-friendly approach for the synthesis of cyclic carbonates from CO2 and epoxides. New Journal of Chemistry, 42, 16863–16874.
  • Nobili, L. and Melloni, M., 1831. Le Thermo-multiplicateur. Annales de chimie et de physique, 48, 198–9.
  • Özbülbül, A., 2006. Oligofenol esaslı yeni tip oligomer schiff bazlarının sentezi ve karakterizasyonu. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 95.
  • Peng, J., Yang, H.J., Wang, S., Ban, B., Wei, Z., Lei, B. and Guo, C.Y., 2018. Efficient solvent-free fixation of CO2 catalyzed by new recyclable bifunctional metal complexes. Journal of CO2 Utilization, 24, 1-9.
  • Redshaw, C., 2017. Use of Metal Catalysts Bearing Schiff Base Macrocycles for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts, 7, 5, 165-176.
  • Roberts, D.W., Schultz, T.W. and Api, A.M. 2017. Skin Sensitization QMM for HRIPT NOEL Data: Aldehyde Schiff-Base Domain. Chemical Research in Toxicology, 30, 6, 1309- 1316.
  • Sella, A., 2018. Melloni’s thermomultiplier. Chemistry World, 15, 70.
  • Serin, S. ve Gök, Y., 1980. Hidroksi Schiff Bazı Metal Komplekslerinin Tekstil Boyamacılığında Kullanılabilirliğinin İncelenmesi. Türk Kimya Derneği, 12, 3, 325-331.
  • Shen, Y. M., Duan, W. L. and Shi, M., 2003. Chemical Fixation of Carbon Dioxide Catalyzed by Binaphthyldiamino Zn, Cu, and Co Salen-Type Complexes. Journal of Organic Chemistry, 68, 1559-1562.
  • Takeda, N. and Inoue, S., 1978. Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins. Macromolecular Chemistry, 179, 1377-1381.
  • Tyndall, J., 1861. On the Absorption and Radiation of Heat by Gases and Vapours. Philosophical Magazine, 22, 273–285.
  • Tyndall, J., 1863. On radiation through the Earth’s atmosphere. Philosophical Magazine, 25, 200–6.
  • Upadhyay, K.K., Kumar, A., Upadhyay, S. and Mishra, P.C., 2008. Synthesis, characterization, structural optimization using density functional theory and superoxide ion scavenging activity of some Schiff bases. Journal of Molecular Structure, 873, 5-16. Verma, S., Nazish, M., Kureshy, R. I. and Khan, N. H., 2018. Bi-functional heterogeneous iron complexes for catalytic conversion of epoxides to cyclic carbonates and their application in the synthesis of polyurethane. Sustainable Energy Fuels, 2, 1312–1322.
  • Yamaguchi, K., Ebitani, K., Yoshida, T., Yoshida, H. and Kaneda, K., 1999. Mg− Al mixed oxides as highly active acid− base catalysts for cycloaddition of carbon dioxide to epoxides. Journal of the American Chemical Society, 121, 18, 4526-4527.
  • Yang, Z.Z., Zhao, Y.N. and He, L.N., 2011. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. Rsc Advances, 1, 4, 545-567.
  • Zhang, Z., Gao, H., Wu, H., Qian, Y., Chen, L. and Chen, J., 2018. Chemical Fixation of CO2 by Using Carbon Material-Grafted N-Heterocyclic Carbene Silver and Copper Complexes. ACS Applied Nano Materials, 1, 6463–6476.
  • Wang, J. and Zhang, Y., 2016. Boronic acids as hydrogen bond donor catalysts for efficient conversion of CO2 into organic carbonate in water. ACS Catalysis, 6, 8, 4871-4876.
  • Xu, B.H., Wang, J.Q., Sun, J., Huang, Y., Zhang, J.P., Zhang, X.P. and Zhang, S.J., 2015. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chemistry, 17, 1, 108-122.
  • https://www.co2.earth/daily-co2 (24.07.2022)

Chemical Conversion of CO2 with Schiff Base Pd(II) Complex in Atmospheric Ambient

Year 2022, , 1290 - 1298, 28.12.2022
https://doi.org/10.35414/akufemubid.1148214

Abstract

Carbon dioxide (CO2) is considered to be the major greenhouse gas causing global warming. CO2 draws attention as a carbon source (C1) in organic synthesis with its abundant, cheap, non-flammable and non-toxic properties. However, it is difficult to utilize CO2 efficiently due to kinetic inertness and thermodynamic stability of CO2, which limits the utilization of CO2 in the chemical industry. This difficulty can be overcome with the help of an effective and efficient catalyst. Despite the difficulties, CO2 has been successfully converted into valuable chemicals such as formic acid, methane, methanol, amide, carbonates, etc. Mainly, synthesis of cyclic carbonate by cycloaddition of CO2 and epoxides is considered one of the most promising ways of utilization. In this study, Schiff base ligand and Pd(II) complex synthesis were carried out. The structure of the compound was characterized by elemental analysis, NMR (1H ve 13C) spectroscopy, FT-IR spectroscopy, and UV-vis spectroscopy, methods. Then, the efficiency of the Schiff base Pd(II) compound was used as a catalyst in the conversion of CO2 with epichlorohydrin to cyclic carbonate, both in the atmospheric environment and in the reactor environment. The effect of the Schiff base Pd(II) catalyst on the conversion in both environments was investigated.

References

  • Aida, T. and Inoue, S., 1983. Metal-ligand complexes and related methods of chemical CO2 fixation. Journal of the American Chemical Society, 105, 1304-1309.
  • Aida, T., Ishikawa, M. and Inoue, S., 1986. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight. Macromolecules, 19, 8-13.
  • Aytar, E., 2022. Atmosferik basınçta imidazolyum tuzları ile CO2’nin halkalı karbonatlara dönüşümü. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12, 3, 923-935.
  • Aytar, E., 2013. İyonik sivilar ve NN tipi Zn-katalizörleri varliğinda CO2’in organik ürünlere dönüşümü. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, 127.
  • Aytar, E., 2019. Konjuge NN kompleks bileşikleri ve katalitik uygulamaları. Doktora Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, 156.
  • Aytar, E., Hartavi, S. and Kasım, V., 2022. Trimetil Anilin Temelinde Yeni Sterik Engelli Salisilaldiminlerin Cu(II) ve Pd(II) Komplekslerinin Sentezi ve Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Accepted).
  • Barthel, A., Saih, Y., Gimenez, M., Pelletier, J. D., Kühn, F.E., D'elia, V.and Basset, J.M., 2016. Highly integrated CO2 capture and conversion: direct synthesis of cyclic carbonates from industrial flue gas. Green Chemistry, 18, 10, 3116-3123.
  • Buttner, H., Lau, K., Spannenberg, A. and Werner, T., 2015. Bifunctional one‐component catalysts for the addition of carbon dioxide to epoxides. ChemCatChem, 7, 459–467.
  • Cokoja, M., Wilhelm, M.E., Anthofer, M.H., Herrmann, W. A. and Kühn, F.E., 2015. Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. Chemistry sustainability energy materials, 8, 15, 2436-2454.
  • Comerford, J.W., Ingram, I.D.V., North, M. and Wu, X., 2015. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chemistry, 17, 1966–1987.
  • Dirisio, R.J., Armstrong, J.E., Frank, M.A., Lake, W.R., McNamara, W.R., 2017. Cobalt Schiff-base complexes for electrocatalytic hydrogen generation. Dalton Transactions, 46, 10418-10425.
  • Fessenden, R.J. and Fessenden, J.S., 1990. Organik Kimya. Tahsin Uyar, Güneş Kitabevi, 16-192.
  • Field, L.D., Shaw, W.J. and Turner, P., 2002. Functionalisation of Carbon Dioxide by an Iron(II) Complex. Chemical Communications, 1, 46-47.
  • Fiorani, G., Guo, W. and Kleij, A.W., 2015. Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chemistry, 17, 3, 1375-1389.
  • Fourier, J., 1824. Remarques Generales sur les Temperatures Du Globe Terrestre et des Espaces Planetaires. Annales de Chemie et de Physique, 27, 136–67.
  • Hartavi, S., 2019. Trimetil anilinler temelinde yeni sterik engelli salisilaldiminlerin Cu (II) ve Pd (II) komplekslerinin sentezi ve karakterizasyonu. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Şanlıurfa, 53.
  • Jung, J.H., Ree, M. and Chang, T., 1999. Copolymerization of Carbon Dioxide and Propylene Oxide Using An Aluminum Porphyrin System and Its Components. Journal of Polymer Science Part A: Polymer Chemistry, 37, 3329-3336.
  • Kılıç, A., Durgun, M., Aytar, E. and Yavuz R., 2018. The synthesis and investigation of different cobaloximines by spectroscopic methods. Journal of Organometallic Chemistry, 858, 78–88.
  • Letcher, T.M., 2016. Climate change: observed impacts on planet earth 2nd ed. Oxford, Elsevier, 2–21, 21–340.
  • Lu, X. B. and Darensbourg, D.J., 2012. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chemical Sociecty Reviews, 41, 1462–1484.
  • Luo, R., Zhang, W., Yang, Z., Zhou, X. and Ji, H., 2017. Synthesis of cyclic carbonates from epoxides over bifunctional salen aluminum oligomers as a CO2-philic catalyst: Catalytic and kinetic investigation. Journal of CO2 Utilization, 19, 257–265.
  • Martin, C., Fiorani, G. and Kleij, A.W., 2015. Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catalysis, 5, 1353–1370.
  • Mirabaud, A., Martinez, A., Bayard, F., Dutasta, J.P. and Dufaud, V., 2018. A new heterogeneous host–guest catalytic system as an eco-friendly approach for the synthesis of cyclic carbonates from CO2 and epoxides. New Journal of Chemistry, 42, 16863–16874.
  • Nobili, L. and Melloni, M., 1831. Le Thermo-multiplicateur. Annales de chimie et de physique, 48, 198–9.
  • Özbülbül, A., 2006. Oligofenol esaslı yeni tip oligomer schiff bazlarının sentezi ve karakterizasyonu. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 95.
  • Peng, J., Yang, H.J., Wang, S., Ban, B., Wei, Z., Lei, B. and Guo, C.Y., 2018. Efficient solvent-free fixation of CO2 catalyzed by new recyclable bifunctional metal complexes. Journal of CO2 Utilization, 24, 1-9.
  • Redshaw, C., 2017. Use of Metal Catalysts Bearing Schiff Base Macrocycles for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts, 7, 5, 165-176.
  • Roberts, D.W., Schultz, T.W. and Api, A.M. 2017. Skin Sensitization QMM for HRIPT NOEL Data: Aldehyde Schiff-Base Domain. Chemical Research in Toxicology, 30, 6, 1309- 1316.
  • Sella, A., 2018. Melloni’s thermomultiplier. Chemistry World, 15, 70.
  • Serin, S. ve Gök, Y., 1980. Hidroksi Schiff Bazı Metal Komplekslerinin Tekstil Boyamacılığında Kullanılabilirliğinin İncelenmesi. Türk Kimya Derneği, 12, 3, 325-331.
  • Shen, Y. M., Duan, W. L. and Shi, M., 2003. Chemical Fixation of Carbon Dioxide Catalyzed by Binaphthyldiamino Zn, Cu, and Co Salen-Type Complexes. Journal of Organic Chemistry, 68, 1559-1562.
  • Takeda, N. and Inoue, S., 1978. Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins. Macromolecular Chemistry, 179, 1377-1381.
  • Tyndall, J., 1861. On the Absorption and Radiation of Heat by Gases and Vapours. Philosophical Magazine, 22, 273–285.
  • Tyndall, J., 1863. On radiation through the Earth’s atmosphere. Philosophical Magazine, 25, 200–6.
  • Upadhyay, K.K., Kumar, A., Upadhyay, S. and Mishra, P.C., 2008. Synthesis, characterization, structural optimization using density functional theory and superoxide ion scavenging activity of some Schiff bases. Journal of Molecular Structure, 873, 5-16. Verma, S., Nazish, M., Kureshy, R. I. and Khan, N. H., 2018. Bi-functional heterogeneous iron complexes for catalytic conversion of epoxides to cyclic carbonates and their application in the synthesis of polyurethane. Sustainable Energy Fuels, 2, 1312–1322.
  • Yamaguchi, K., Ebitani, K., Yoshida, T., Yoshida, H. and Kaneda, K., 1999. Mg− Al mixed oxides as highly active acid− base catalysts for cycloaddition of carbon dioxide to epoxides. Journal of the American Chemical Society, 121, 18, 4526-4527.
  • Yang, Z.Z., Zhao, Y.N. and He, L.N., 2011. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. Rsc Advances, 1, 4, 545-567.
  • Zhang, Z., Gao, H., Wu, H., Qian, Y., Chen, L. and Chen, J., 2018. Chemical Fixation of CO2 by Using Carbon Material-Grafted N-Heterocyclic Carbene Silver and Copper Complexes. ACS Applied Nano Materials, 1, 6463–6476.
  • Wang, J. and Zhang, Y., 2016. Boronic acids as hydrogen bond donor catalysts for efficient conversion of CO2 into organic carbonate in water. ACS Catalysis, 6, 8, 4871-4876.
  • Xu, B.H., Wang, J.Q., Sun, J., Huang, Y., Zhang, J.P., Zhang, X.P. and Zhang, S.J., 2015. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chemistry, 17, 1, 108-122.
  • https://www.co2.earth/daily-co2 (24.07.2022)
There are 41 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Emine Aytar 0000-0001-7572-8088

Publication Date December 28, 2022
Submission Date July 25, 2022
Published in Issue Year 2022

Cite

APA Aytar, E. (2022). Atmosferik Ortamda Schiff Bazı Pd(II) Kompleksi ile CO2’nin Kimyasal Dönüşümü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(6), 1290-1298. https://doi.org/10.35414/akufemubid.1148214
AMA Aytar E. Atmosferik Ortamda Schiff Bazı Pd(II) Kompleksi ile CO2’nin Kimyasal Dönüşümü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2022;22(6):1290-1298. doi:10.35414/akufemubid.1148214
Chicago Aytar, Emine. “Atmosferik Ortamda Schiff Bazı Pd(II) Kompleksi Ile CO2’nin Kimyasal Dönüşümü”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 6 (December 2022): 1290-98. https://doi.org/10.35414/akufemubid.1148214.
EndNote Aytar E (December 1, 2022) Atmosferik Ortamda Schiff Bazı Pd(II) Kompleksi ile CO2’nin Kimyasal Dönüşümü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 6 1290–1298.
IEEE E. Aytar, “Atmosferik Ortamda Schiff Bazı Pd(II) Kompleksi ile CO2’nin Kimyasal Dönüşümü”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 6, pp. 1290–1298, 2022, doi: 10.35414/akufemubid.1148214.
ISNAD Aytar, Emine. “Atmosferik Ortamda Schiff Bazı Pd(II) Kompleksi Ile CO2’nin Kimyasal Dönüşümü”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/6 (December 2022), 1290-1298. https://doi.org/10.35414/akufemubid.1148214.
JAMA Aytar E. Atmosferik Ortamda Schiff Bazı Pd(II) Kompleksi ile CO2’nin Kimyasal Dönüşümü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:1290–1298.
MLA Aytar, Emine. “Atmosferik Ortamda Schiff Bazı Pd(II) Kompleksi Ile CO2’nin Kimyasal Dönüşümü”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 6, 2022, pp. 1290-8, doi:10.35414/akufemubid.1148214.
Vancouver Aytar E. Atmosferik Ortamda Schiff Bazı Pd(II) Kompleksi ile CO2’nin Kimyasal Dönüşümü. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(6):1290-8.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.