Effects of Rock Salt and Sea Salt Stress on Wheat (Triticum vulgare L.) and Barley (Hordeum vulgare L.)
Year 2023,
, 547 - 554, 28.06.2023
Ali Kara
,
Tuğçe Varol
,
Müjgan Elveren
,
Etem Osma
Abstract
In this study, the effects of rock salt and sea salt on wheat and barley growth were compared. For the study, 4 g barley and 5 g wheat seeds were planted in 650 g soil and covered with 100 g soil. Rock salt and sea salt solution were given to germinated wheat and barley once at different concentrations of 50, 100 and 250 NM. The plants were irrigated according to the field capacity and harvested after 15 days of growing. The amount of electrolyte leakage and antioxidant activities (CAT, SOD, POD) were determined in the harvested samples. The relationship between the control samples and the samples, to which sea and rock salt was applied, was statistically calculated with SPSS 22 Statistical Package Program. Significant differences between the samples were found out. As a result, in the samples where different salt concentrations were applied a significant increase was observed in the electrolyte leakage and antioxidant activities of the plants due to the increase in concentration.
References
- Ahmadi, M., Souri, M.K., 2019. Nutrient uptake, proline content and antioxidant enzymes activity of pepper (Capsicum annuum L.) under higher electrical conductivity of nutrient solution created by nitrate and chloride salts of potassium and calcium. Acta Scientiarum Polonorum Hortorum Cultus, 18, 113–122.
- Agarval, S. and Pandey V., 2004. Antioxidant Enzyme Responses to Nacl Stress in Cassia Angustifolia. Biologia Plantarum, 48(4), 555-560.
- Alluqmani, S.M. Alabdallah N.M., 2022. Dry waste of red tea leaves and rose petals confer salinity stress tolerance in strawberry plants via modulation of growth and physiology. Journal of the Saudi Society of Agricultural Sciences.
- Ashraf, M., Mukhtar, N., Rehman, S., Rha, E.S., 2004. Salt-induced changes in photosynthetic activity and growth in a potential medicinal plant Bishops weed (Ammi majus L). Photosynthetica, 42(4), 543-550.
- Aşçi, Ö.Ö., Üney, H., 2016. Farklı tuz yoğunluklarının macar fiğinde (Vicia pannonica Crantz) çimlenme ve bitki gelişimine etkisi. Akademik Ziraat Dergisi, 5(1):29-34.
- Benlioğlu, B., Özkan, U., 2015. Bazı Arpa Çeşitlerinin (Hordeum vulgare L.) Çimlenme Dönemlerinde Farklı Dozlardaki Tuz Stresine Tepkilerinin Belirlenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 24(2), 109-114
- Bor, M., Özdemir, F., Türkan, I., 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science, 164, 77-84
- Bose, J., Shabala, L., Pottosin, I., Zeng, F., Velarde-Buendía, A.N.A., Massart, A., Poschenrieder, C., Hariadi, Y., Shabala, S., 2014. Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Plant Cell Environment, 37, 589–600.
- Chakraborty, K., Bose, J., Shabala, L., Shabala, S., 2016. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. Journal of Experimental Botany, 67, 4611–4625.
- Çulha, Ş., Çakırlar, H., 2011. Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11, 11-34.
- Das, K., Roychoudhury, A., 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53.
- Dehnavi, A.R. Zahedi, M., Ludwiczak, A., Perez, SC. Piernik A., 2020. Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy, 10, 859.
- Farhangi-Abriz, S.. Rashidabad N.N., 2017. Effect of lignite on alleviation of salt toxicity in soybean (Glycine max L.) Plants. Plant Physiology and Biochemistry, 120, 186–193.
- Farhangi-Abriz, S., Torabian, S., 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, 137, 64–70.
- EL Sabagh A, Islam MS, Skalicky M,Ali Raza M, Singh K, Anwar Hossain M, Hossain A, Mahboob W, Iqbal MA, Ratnasekera D, Singhal RK, Ahmed S, Kumari A, Wasaya A, Sytar O, Brestic M, ÇIG F, Erman M, Habib Ur Rahman M, Ullah N and Arshad A., 2021. Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Frontiers in Agronomy, 3, 661932.
- Elveren, M., Varol, M., Osma, E., 2018. Klima Atık Sularının Buğday ve Arpa Üzerindeki Etkilerinin Araştırılması. Erzincan University Journal of Science and Technology, 11(3), 467-478.
- Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.
- Griffith, M., Ala P., Yang D.S.C., Hon W.C., Moffatt B.A., 1992. Antifreeze Protein Produced Endogenously in Winter Rye Leaves. Plant Physiology, 100, 593– 596.
- Gogna, M., Choudhary, A., Mishra, G., Kapoor, R., Bhatla, S.C., 2020. Changes in lipid composition in response to salt stress and its possible interaction with intracellular Na+-K+ ratio in sunflower (Helianthus annuus L.). Environmental and Experimental Botany, 178, 104147
- Hossain, M.S., ElSayed, A.I., Moore, M., Dietz, K.J., 2017. Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. Journal of Experimental Botany, 68, 1283–1298.
- Ignat, T., Shavit Y., Rachmilevitch, S., Karnieli, A., 2022. Spectral monitoring of salinity stress in tomato plants. Biosystems Engineering, 217, 26-40.
- Kalhoro, N. A., Rajpar, I., Kalhoro, S. A., Ali, A., Raza, S., Ahmed, M., et al. 2016. Effect of salts stress on the growth and yield of wheat (Triticum aestivum L.). American Journal of Plant Sciences, 7, 2257. doi: 10.4236/ajps.2016.715199
- Kaya, A., İnan M., 2017. Effect of Salicylic Acid on Some Morphological, Physiological and Biochemical Parameters of Basil Plant (Ocimum basilicum L.) Which was Subjected to Salt (NaCl) Stress. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3), 332-342.
- Kaya, A., İnan M., 2018. Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L. ) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri. KSÜ Tarım ve Doğa Dergisi, 21(4), 559-564.
- Lang, D., Yu X., Jia X., Li, Z., Zhanga, X. 2020. Methyl jasmonate improves metabolism and growth of NaCl-stressed Glycyrrhiza uralensis seedlings. Scientia Horticulturae, 266 109287.
- Mantri, N., Patade, V., Penna, S., Ford, R., Pang, E., 2012. Abiotic stress responses in plants: Present and future. In Abiotic stress responses in plants (pp. 1e19). New York: Springer. https:// doi.org/10.1007/978-1-4614-0634-1_1.
- Munns, R., 2003. Comparative physiology of salt and water stress. Plant Cell & Environmental. 25, 239–50.
- Nassar, R., Kamel, H. A., Ghoniem, A. E., Alarcón, J. J., Sekara, A., Ulrichs, C., et al. 2020. Physiological and anatomical mechanisms in wheat to cope withsalt stress induced by seawater. Plants, 9, 237. doi: 10.3390/plants9020237.
- Osma, E., Elveren, M., Türkoğlu, E., Yavuzer, H., Çığır, Y., 2017. Tıbbi İlaçlar ve Kişisel Bakım Ürünlerinin (PPCPs) Triticum aestivum L. Üzerinde Antioksidan Enzim Aktivitelerine Etkileri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 535-541.
- Oukarroum, A., Bussotti, F., Goltsev, V., Kalaji, H.M., 2015. Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environmental and Experimental Botany, 109, 80–88.
- Rai, A, Cherif, A., Cruz, C., Nabti E., 2018. Extracts from Marine Macroalgae and Opuntia cus-indica Cladodes Enhance Halotolerance and Enzymatic Potential of Diazotrophic Rhizobacteria and Their Impact on Wheat Germination Under Salt Stress. Pedosphere, 28(2), 241–254.
- Tarchoune, I., Sgherri, C., Izzo, R., Lachaal, M., Ouerghi, Z., Navari-Izzo, F., 2010. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiology and Biochemistry, 48, 772-777.
- Turan, M. A., Elkarim, A. H. A., Taban, N., and Taban, S. (2009). Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. African Journal of Agricultural Research, 4, 893–897. doi: 10.5897/AJAR.9000223.
- Uyanık, M., Kara, Ş.M., Korkmaz, K., 2014. Determination of Responses of Some Winter Canola (Brassica napus L.) Cultivars to Salt Stress at Germination Period. Journal of Agricultural Sciences, 20, 368-375.
- Zamani S, Nezami M T, Habibi D, Khorshidi M.B., 2010. Effect of quantitive and qualitative performence of four canola cultivars (Brassica napus L.) to salinity conditions. Advances in Enviromental Biology 4(3), 422-427.
Kaya Tuzu ile Deniz Tuzu Stresinin Buğday (Triticum vulgare L.) ve Arpa (Hordeum vulgare L.) Üzerindeki Etkileri
Year 2023,
, 547 - 554, 28.06.2023
Ali Kara
,
Tuğçe Varol
,
Müjgan Elveren
,
Etem Osma
Abstract
Bu çalışmada kaya tuzu ile deniz tuzunun buğday ve arpa gelişimi üzerindeki etkileri kıyaslanmıştır. Çalışma için 650 g toprağa 4 g arpa ve 5 g buğday tohumu ekilerek üzerleri 100 g toprak ile kaplanmıştır. Çimlenen buğday ve arpalara 50, 100 ve 250 NM olacak şekilde farklı konsantrasyonlarda bir kez kaya tuzu ile deniz tuzu çözeltisi verilmiştir. Bitkiler yetiştirilme sürecinde tarla kapasitesine uygun sulanarak, 15 gün yetiştirildikten sonra hasat edilmiştir. Hasadı yapılan örneklerde elektrolit sızıntı miktarı ile antioksidan aktiviteleri (CAT, SOD, POD) belirlenmiştir. Kontrol örnekleri ile deniz ve kaya tuzunun uygulandığı örnekler arasındaki ilişki SPSS 22 İstatistik Paket Programı’nda istatistiksel olarak değerlendirilmiştir. Örnekler arasında anlamlı farklılıklar olduğu tespit edilmiştir. Sonuç olarak, farklı tuz konsantrasyonlarının uygulandığı örneklerde konsantrasyon artışına bağlı olarak bitkilerin elektrolit sızıntı ile antioksidan aktivitelerinde önemli ölçüde artış gözlenmiştir.
References
- Ahmadi, M., Souri, M.K., 2019. Nutrient uptake, proline content and antioxidant enzymes activity of pepper (Capsicum annuum L.) under higher electrical conductivity of nutrient solution created by nitrate and chloride salts of potassium and calcium. Acta Scientiarum Polonorum Hortorum Cultus, 18, 113–122.
- Agarval, S. and Pandey V., 2004. Antioxidant Enzyme Responses to Nacl Stress in Cassia Angustifolia. Biologia Plantarum, 48(4), 555-560.
- Alluqmani, S.M. Alabdallah N.M., 2022. Dry waste of red tea leaves and rose petals confer salinity stress tolerance in strawberry plants via modulation of growth and physiology. Journal of the Saudi Society of Agricultural Sciences.
- Ashraf, M., Mukhtar, N., Rehman, S., Rha, E.S., 2004. Salt-induced changes in photosynthetic activity and growth in a potential medicinal plant Bishops weed (Ammi majus L). Photosynthetica, 42(4), 543-550.
- Aşçi, Ö.Ö., Üney, H., 2016. Farklı tuz yoğunluklarının macar fiğinde (Vicia pannonica Crantz) çimlenme ve bitki gelişimine etkisi. Akademik Ziraat Dergisi, 5(1):29-34.
- Benlioğlu, B., Özkan, U., 2015. Bazı Arpa Çeşitlerinin (Hordeum vulgare L.) Çimlenme Dönemlerinde Farklı Dozlardaki Tuz Stresine Tepkilerinin Belirlenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 24(2), 109-114
- Bor, M., Özdemir, F., Türkan, I., 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science, 164, 77-84
- Bose, J., Shabala, L., Pottosin, I., Zeng, F., Velarde-Buendía, A.N.A., Massart, A., Poschenrieder, C., Hariadi, Y., Shabala, S., 2014. Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Plant Cell Environment, 37, 589–600.
- Chakraborty, K., Bose, J., Shabala, L., Shabala, S., 2016. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. Journal of Experimental Botany, 67, 4611–4625.
- Çulha, Ş., Çakırlar, H., 2011. Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11, 11-34.
- Das, K., Roychoudhury, A., 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53.
- Dehnavi, A.R. Zahedi, M., Ludwiczak, A., Perez, SC. Piernik A., 2020. Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy, 10, 859.
- Farhangi-Abriz, S.. Rashidabad N.N., 2017. Effect of lignite on alleviation of salt toxicity in soybean (Glycine max L.) Plants. Plant Physiology and Biochemistry, 120, 186–193.
- Farhangi-Abriz, S., Torabian, S., 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, 137, 64–70.
- EL Sabagh A, Islam MS, Skalicky M,Ali Raza M, Singh K, Anwar Hossain M, Hossain A, Mahboob W, Iqbal MA, Ratnasekera D, Singhal RK, Ahmed S, Kumari A, Wasaya A, Sytar O, Brestic M, ÇIG F, Erman M, Habib Ur Rahman M, Ullah N and Arshad A., 2021. Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Frontiers in Agronomy, 3, 661932.
- Elveren, M., Varol, M., Osma, E., 2018. Klima Atık Sularının Buğday ve Arpa Üzerindeki Etkilerinin Araştırılması. Erzincan University Journal of Science and Technology, 11(3), 467-478.
- Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.
- Griffith, M., Ala P., Yang D.S.C., Hon W.C., Moffatt B.A., 1992. Antifreeze Protein Produced Endogenously in Winter Rye Leaves. Plant Physiology, 100, 593– 596.
- Gogna, M., Choudhary, A., Mishra, G., Kapoor, R., Bhatla, S.C., 2020. Changes in lipid composition in response to salt stress and its possible interaction with intracellular Na+-K+ ratio in sunflower (Helianthus annuus L.). Environmental and Experimental Botany, 178, 104147
- Hossain, M.S., ElSayed, A.I., Moore, M., Dietz, K.J., 2017. Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. Journal of Experimental Botany, 68, 1283–1298.
- Ignat, T., Shavit Y., Rachmilevitch, S., Karnieli, A., 2022. Spectral monitoring of salinity stress in tomato plants. Biosystems Engineering, 217, 26-40.
- Kalhoro, N. A., Rajpar, I., Kalhoro, S. A., Ali, A., Raza, S., Ahmed, M., et al. 2016. Effect of salts stress on the growth and yield of wheat (Triticum aestivum L.). American Journal of Plant Sciences, 7, 2257. doi: 10.4236/ajps.2016.715199
- Kaya, A., İnan M., 2017. Effect of Salicylic Acid on Some Morphological, Physiological and Biochemical Parameters of Basil Plant (Ocimum basilicum L.) Which was Subjected to Salt (NaCl) Stress. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3), 332-342.
- Kaya, A., İnan M., 2018. Kuraklık ve Tuz Streslerine Maruz Kalan Tütün (Nicotiana tabacum L. ) Bitkisinde Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Melatoninin Etkileri. KSÜ Tarım ve Doğa Dergisi, 21(4), 559-564.
- Lang, D., Yu X., Jia X., Li, Z., Zhanga, X. 2020. Methyl jasmonate improves metabolism and growth of NaCl-stressed Glycyrrhiza uralensis seedlings. Scientia Horticulturae, 266 109287.
- Mantri, N., Patade, V., Penna, S., Ford, R., Pang, E., 2012. Abiotic stress responses in plants: Present and future. In Abiotic stress responses in plants (pp. 1e19). New York: Springer. https:// doi.org/10.1007/978-1-4614-0634-1_1.
- Munns, R., 2003. Comparative physiology of salt and water stress. Plant Cell & Environmental. 25, 239–50.
- Nassar, R., Kamel, H. A., Ghoniem, A. E., Alarcón, J. J., Sekara, A., Ulrichs, C., et al. 2020. Physiological and anatomical mechanisms in wheat to cope withsalt stress induced by seawater. Plants, 9, 237. doi: 10.3390/plants9020237.
- Osma, E., Elveren, M., Türkoğlu, E., Yavuzer, H., Çığır, Y., 2017. Tıbbi İlaçlar ve Kişisel Bakım Ürünlerinin (PPCPs) Triticum aestivum L. Üzerinde Antioksidan Enzim Aktivitelerine Etkileri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 535-541.
- Oukarroum, A., Bussotti, F., Goltsev, V., Kalaji, H.M., 2015. Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environmental and Experimental Botany, 109, 80–88.
- Rai, A, Cherif, A., Cruz, C., Nabti E., 2018. Extracts from Marine Macroalgae and Opuntia cus-indica Cladodes Enhance Halotolerance and Enzymatic Potential of Diazotrophic Rhizobacteria and Their Impact on Wheat Germination Under Salt Stress. Pedosphere, 28(2), 241–254.
- Tarchoune, I., Sgherri, C., Izzo, R., Lachaal, M., Ouerghi, Z., Navari-Izzo, F., 2010. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiology and Biochemistry, 48, 772-777.
- Turan, M. A., Elkarim, A. H. A., Taban, N., and Taban, S. (2009). Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. African Journal of Agricultural Research, 4, 893–897. doi: 10.5897/AJAR.9000223.
- Uyanık, M., Kara, Ş.M., Korkmaz, K., 2014. Determination of Responses of Some Winter Canola (Brassica napus L.) Cultivars to Salt Stress at Germination Period. Journal of Agricultural Sciences, 20, 368-375.
- Zamani S, Nezami M T, Habibi D, Khorshidi M.B., 2010. Effect of quantitive and qualitative performence of four canola cultivars (Brassica napus L.) to salinity conditions. Advances in Enviromental Biology 4(3), 422-427.