Effect of Anisotropy on Basic and Residual Friction Angles in Schist Rocks
Year 2023,
, 208 - 215, 01.03.2023
Mehmet Özdemir
,
Sunay Beyhan
,
Kaan Erarslan
Abstract
The basic friction angle (φb) tests are a common and practical method used to determine the shear strength of discontinuities. Tilt device is generally used in basic friction angle experiments. In this study, the effects of the anisotropy properties of green and mica schist rocks taken from the copper mine site in Kastamonu Hanönü district on the basic and residual friction angles were investigated. For this purpose, experiments with a specially designed tilt device were conducted on dried and saturated green schist and mica schist samples with orientation angles of 0°, 15°, 30°, 45°, 60°, 75° and 90° relative to the loading axis. According to the results in dried and saturated conditions, maximum basic and residual friction angle values were obtained for green schist samples at 60°. The results were close to each other in the experiments carried out in both saturated and dried conditions. Green schist samples were less affected by the saturated media. Mica schist samples were not affected by anisotropy for both media, and close values were obtained in all orientation angles. It was determined that the basic and residual friction angles were lower in saturated conditions compared to dried ones.
Supporting Institution
Kütahya Dumlupınar Üniversitesi BAP Koordinatörlüğü
Thanks
The authors would like to thank Kütahya Dumlupınar University BAP Coordinatorship for financial support with the project numbered 2019-05.
References
- Ajalloeian, R. and Lashkaripour, G.R., 2000. Strength anisotropies in mudrocks. Bulletin of Engineering Geology and the Environment, 59(3), 195–199.
- Alejano, L. R., González, J. and Muralha, J., 2012. Comparison of different techniques of tilt testing and basic friction angle variability assessment. Rock Mechanics and Rock Engineering, 45(6), 1023–1035.
- Alejano, L. R., Muralha, J., Ulusay, R., Li, C. C., Pérez-Rey, I., Karakul, H., Chryssanthakis, P. and Aydan, Ö., 2018. ISRM Suggested Method for Determining the Basic Friction Angle of Planar Rock Surfaces by Means of Tilt Tests. Rock Mechanics and Rock Engineering, 51(12), 3853–3859.
- Barton, N. R., 2016. Non-linear shear strength for rock, rock joints, rockfill and interfaces. Innovative Infrastructure Solutions, 1(1), 1–19.
- Barton, N. R., 2013. Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering, 5(4), 249–261.
- Barton, N. R. and Bandis, S. C., 2017. Characterization and modeling of the shear strength, stiffness and hydraulic behavior of rock joints for engineering purposes. Rock Mechanics and Engineering. 1–38.
- Beyhan, S. and Özdemir, M., 2021. Evaluation of the basic friction angle in dry and conditioned fluids by tilt tests. IOP Conference Series: Earth and Environmental Science.
- Cho, J.W., Kim, H., Jeon, S. and Min, K.B., 2012. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. International Journal of Rock Mechanics and Mining Sciences, 50(1), 158–169.
- González, J., González-Pastoriza, N., Castro, U., Alejano, L. R. and Muralha, J., 2014. Considerations on the laboratory estimate of the basic friction angle of rock joints. EUROCK 2014, ISRM European Regional Symposium. Vigo, 199–204.
- Huang, L., Liu, X., Yan, S., Xiong, J., He, H. and Xiao, P., 2020. Experimental study on the acoustic propagation and anisotropy of coal rocks. Petroleum, 8(1), 31-38.
- Ismael, M., Lifu, C. and Konietzky, H., 2017. Behavior of Anisotropic Rocks. E-Book, July.
- ISRM 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring: R. Ulusay and J. A. Hudson (eds). Kozan Ofset, Ankara, 1974-2006.
- Jang, H. S., Zhang, Q. Z., Kang, S. S. and Jang, B. A., 2018. Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests. Rock Mechanics and Rock Engineering, 51(4), 989–1004.
- Kim, D. H., Gratchev, I., Hein, M. and Balasubramaniam, A., 2016. The Application of Normal Stress Reduction Function in Tilt Tests for Different Block Shapes. Rock Mechanics and Rock Engineering, 49(8), 3041–3054.
- Nasseri, M. H. ., Rao, K. . and Ramamurthy, T., 2003. Anisotropic strength and deformational behavior of Himalayan schists. International Journal of Rock Mechanics and Mining Sciences, 40(1), 3–23.
- Okay, A. I., Tüysüz, O., Satir, M., Özkan-Altiner, S., Altıner, D., Sherlock, S. and Eren, R. H., 2006. Cretaceous and Triassic subduction-accretion, high-pressure-low- temperature metamorphism, and continental growth in the Central Pontides, Turkey. Bulletin of the Geological Society of America, 118(9-10), 1247–1269.
- Özdemir, M., 2021. Slope stability analyzes in metamorphic rock masses with anisotropic behaviour, PhD Thesis, Kütahya Dumlupinar University, Institute of Graduate Programs, Kütahya, 154.
- Ramamurthy, T., Rao, G. V. and Singh, J., 1993. Engineering behaviour of phyllites. Engineering Geology, 33(3), 209–225.
- Ruiz, J. and Li, C., 2014. Measurement of the basic friction Angle of rock by three different tilt test methods. ISRM Regional Symposium-EUROCK 2014. ISRM, Vigo, Spain, 260–266.
- Salager, S., François, B., Nuth, M. and Laloui, L., 2013. Constitutive analysis of the mechanical anisotropy of Opalinus Clay. Acta Geotechnica, 8(2), 137–154.
- Saroglou, H. and Tsiambaos, G., 2008. A modified Hoek–Brown failure criterion for anisotropic intact rock. International Journal of Rock Mechanics and Mining Sciences, 45(2), 223–234.
- Tang, Z. C., Zhang, Q. Z. and Peng, J., 2020. Effect of Thermal Treatment on the Basic Friction Angle of Rock Joint. Rock Mechanics and Rock Engineering, 53(4), 1973–1990.
- Tüysüz, O., 1999. Geology of the Cretaceous sedimentary basins of the Western Pontides. Geological Journal, 34(1-2), 75–93.
- Ulusay, R. and Karakul, H., 2016. Assessment of basic friction angles of various rock types from Turkey under dry, wet and submerged conditions and some considerations on tilt testing. Bulletin of Engineering Geology and the Environment, 75(4), 1683–1699.
- Wang, P., Ren, F., Miao, S., Cai, M. and Yang, T., 2017. Evaluation of the anisotropy and directionality of a jointed rock mass under numerical direct shear tests. Engineering Geology, 225, 29–41.
- Wang, P., Yang, T. and Zhou, J., 2018. Slope failure analysis considering anisotropic characteristics of foliated rock masses. Arabian Journal of Geosciences, 11(9), 222-237.
- Xu, G., He, C. and Chen, Z., 2019. Mechanical behavior of transversely isotropic rocks with non-continuous planar fabrics under compression tests. Computers and Geotechnics, 115(7), 1–29.
- Yıldız, H., Günay, K., Şahin, Ş., Niğdeli, S. F. and İçli, M. Y., 2014. Hanönü (Kastamonu) Copper Site (Ar: 201300022) mining geology report based on discovering request, Ankara.
- Zhang, N., Li, C. C., Lu, A., Chen, X., Liu, D. and Zhu, E., 2018. Experimental studies on the basic friction angle of planar rock surfaces by tilt test. Journal of Testing and Evaluation, 47(1), 256–283.
- Zhang, X.P., Wong, L. N. Y., Wang, S.J. and Han, G.Y., 2011. Engineering properties of quartz mica schist. Engineering Geology, 121(3–4), 135–149.
Şist Kayaçlarında Anizotropinin Temel ve Rezidüel Sürtünme Açılarına Etkisi
Year 2023,
, 208 - 215, 01.03.2023
Mehmet Özdemir
,
Sunay Beyhan
,
Kaan Erarslan
Abstract
Temel sürtünme açısı (φb) deneyleri süreksizliklerin kayma dayanımının belirlenmesi için kullanılan yaygın ve pratik bir yöntemdir. Temel sürtünme açısı deneylerinde genel olarak tilt cihazı kullanılmaktadır. Bu çalışmada, Kastamonu Hanönü ilçesindeki bakır madeni sahasından alınan yeşil ve mika şist kayaçlarının anizotropi özelliklerinin temel ve rezidüel sürtünme açılarına etkisi incelenmiştir. Bu amaçla, yükleme eksenine göre 0°, 15°, 30°, 45°, 60°, 75° ve 90° yönelim açısına sahip kuru ve doygun yeşil şist ve mika şist numunelerine özel olarak tasarlanan tilt cihazı ile deneyler uygulanmıştır. Kuru ve doygun ortamlardaki sonuçlara göre yeşil şist numuneleri için 60°de maksimum temel ve rezidüel sürtünme açısı değerleri elde edilmiştir. Hem doygun hem de kuru ortam şartlarında yapılan deneylerde birbirine yakın sonuçlar elde edilmiştir. Doygun ortamdan yeşil şist numuneleri daha az etkilenmiştir. Mika şist numuneleri ise her iki ortam için anizotropiden etkilenmemiş ve tüm yönelim açılarında yakın değerler elde edilmiştir. Doygun ortam şartlarında temel ve rezidüel sürtünme açısının, kuru ortam şartlarına kıyasla daha düşük değerlerde olduğu belirlenmiştir.
References
- Ajalloeian, R. and Lashkaripour, G.R., 2000. Strength anisotropies in mudrocks. Bulletin of Engineering Geology and the Environment, 59(3), 195–199.
- Alejano, L. R., González, J. and Muralha, J., 2012. Comparison of different techniques of tilt testing and basic friction angle variability assessment. Rock Mechanics and Rock Engineering, 45(6), 1023–1035.
- Alejano, L. R., Muralha, J., Ulusay, R., Li, C. C., Pérez-Rey, I., Karakul, H., Chryssanthakis, P. and Aydan, Ö., 2018. ISRM Suggested Method for Determining the Basic Friction Angle of Planar Rock Surfaces by Means of Tilt Tests. Rock Mechanics and Rock Engineering, 51(12), 3853–3859.
- Barton, N. R., 2016. Non-linear shear strength for rock, rock joints, rockfill and interfaces. Innovative Infrastructure Solutions, 1(1), 1–19.
- Barton, N. R., 2013. Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering, 5(4), 249–261.
- Barton, N. R. and Bandis, S. C., 2017. Characterization and modeling of the shear strength, stiffness and hydraulic behavior of rock joints for engineering purposes. Rock Mechanics and Engineering. 1–38.
- Beyhan, S. and Özdemir, M., 2021. Evaluation of the basic friction angle in dry and conditioned fluids by tilt tests. IOP Conference Series: Earth and Environmental Science.
- Cho, J.W., Kim, H., Jeon, S. and Min, K.B., 2012. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. International Journal of Rock Mechanics and Mining Sciences, 50(1), 158–169.
- González, J., González-Pastoriza, N., Castro, U., Alejano, L. R. and Muralha, J., 2014. Considerations on the laboratory estimate of the basic friction angle of rock joints. EUROCK 2014, ISRM European Regional Symposium. Vigo, 199–204.
- Huang, L., Liu, X., Yan, S., Xiong, J., He, H. and Xiao, P., 2020. Experimental study on the acoustic propagation and anisotropy of coal rocks. Petroleum, 8(1), 31-38.
- Ismael, M., Lifu, C. and Konietzky, H., 2017. Behavior of Anisotropic Rocks. E-Book, July.
- ISRM 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring: R. Ulusay and J. A. Hudson (eds). Kozan Ofset, Ankara, 1974-2006.
- Jang, H. S., Zhang, Q. Z., Kang, S. S. and Jang, B. A., 2018. Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests. Rock Mechanics and Rock Engineering, 51(4), 989–1004.
- Kim, D. H., Gratchev, I., Hein, M. and Balasubramaniam, A., 2016. The Application of Normal Stress Reduction Function in Tilt Tests for Different Block Shapes. Rock Mechanics and Rock Engineering, 49(8), 3041–3054.
- Nasseri, M. H. ., Rao, K. . and Ramamurthy, T., 2003. Anisotropic strength and deformational behavior of Himalayan schists. International Journal of Rock Mechanics and Mining Sciences, 40(1), 3–23.
- Okay, A. I., Tüysüz, O., Satir, M., Özkan-Altiner, S., Altıner, D., Sherlock, S. and Eren, R. H., 2006. Cretaceous and Triassic subduction-accretion, high-pressure-low- temperature metamorphism, and continental growth in the Central Pontides, Turkey. Bulletin of the Geological Society of America, 118(9-10), 1247–1269.
- Özdemir, M., 2021. Slope stability analyzes in metamorphic rock masses with anisotropic behaviour, PhD Thesis, Kütahya Dumlupinar University, Institute of Graduate Programs, Kütahya, 154.
- Ramamurthy, T., Rao, G. V. and Singh, J., 1993. Engineering behaviour of phyllites. Engineering Geology, 33(3), 209–225.
- Ruiz, J. and Li, C., 2014. Measurement of the basic friction Angle of rock by three different tilt test methods. ISRM Regional Symposium-EUROCK 2014. ISRM, Vigo, Spain, 260–266.
- Salager, S., François, B., Nuth, M. and Laloui, L., 2013. Constitutive analysis of the mechanical anisotropy of Opalinus Clay. Acta Geotechnica, 8(2), 137–154.
- Saroglou, H. and Tsiambaos, G., 2008. A modified Hoek–Brown failure criterion for anisotropic intact rock. International Journal of Rock Mechanics and Mining Sciences, 45(2), 223–234.
- Tang, Z. C., Zhang, Q. Z. and Peng, J., 2020. Effect of Thermal Treatment on the Basic Friction Angle of Rock Joint. Rock Mechanics and Rock Engineering, 53(4), 1973–1990.
- Tüysüz, O., 1999. Geology of the Cretaceous sedimentary basins of the Western Pontides. Geological Journal, 34(1-2), 75–93.
- Ulusay, R. and Karakul, H., 2016. Assessment of basic friction angles of various rock types from Turkey under dry, wet and submerged conditions and some considerations on tilt testing. Bulletin of Engineering Geology and the Environment, 75(4), 1683–1699.
- Wang, P., Ren, F., Miao, S., Cai, M. and Yang, T., 2017. Evaluation of the anisotropy and directionality of a jointed rock mass under numerical direct shear tests. Engineering Geology, 225, 29–41.
- Wang, P., Yang, T. and Zhou, J., 2018. Slope failure analysis considering anisotropic characteristics of foliated rock masses. Arabian Journal of Geosciences, 11(9), 222-237.
- Xu, G., He, C. and Chen, Z., 2019. Mechanical behavior of transversely isotropic rocks with non-continuous planar fabrics under compression tests. Computers and Geotechnics, 115(7), 1–29.
- Yıldız, H., Günay, K., Şahin, Ş., Niğdeli, S. F. and İçli, M. Y., 2014. Hanönü (Kastamonu) Copper Site (Ar: 201300022) mining geology report based on discovering request, Ankara.
- Zhang, N., Li, C. C., Lu, A., Chen, X., Liu, D. and Zhu, E., 2018. Experimental studies on the basic friction angle of planar rock surfaces by tilt test. Journal of Testing and Evaluation, 47(1), 256–283.
- Zhang, X.P., Wong, L. N. Y., Wang, S.J. and Han, G.Y., 2011. Engineering properties of quartz mica schist. Engineering Geology, 121(3–4), 135–149.