Research Article
BibTex RIS Cite

Structural and Mechanical Properties of Carbon Fiber Fabric Reinforced ZrB2-SiC Composites Produced by Spark Plasma Sintering Method

Year 2023, , 991 - 1000, 31.08.2023
https://doi.org/10.35414/akufemubid.1170658

Abstract

Within the scope of this study, ceramic matrix composite materials were produced by reinforcing carbon fiber fabric into the ZrB2-SiC matrix phase. A ceramic slurry was prepared by mixing the ceramic materials used in the ethanol environment, and this ceramic slurry was impregnated with carbon fiber fabrics by applying pressureless impregnation. The mass ratio of ceramic materials is ZrB2-20wt%SiC. In order to investigate the effect of the binder, some composites were prepared using polyvinyl butyral (PVB). In order to obtain a homogeneous ceramic slurry, the starting powders were added into a polyethylene (PET) bottle and mixed for 24 hours in a ball mill using Si3N4 balls. Composite materials were subjected to Spark Plasma Sintering (SPS) process after the application of the prepared ceramic slurry to carbon fiber fabrics and drying. The sintering process was carried out as single-stage and double-stage. The maximum sintering temperature reached is 2000 ℃ and the waiting time at the maximum temperature is 30 minutes. The maximum applied pressure is 50 MPa. After the sintering process, density analysis with Archimedes Principle, phase analysis with X-ray powder diffraction method, micro-structural analysis with scanning electron microscope and 3-point bending test analysis with Instron device were performed for the samples cut in suitable sizes for various characterization processes. According to the results obtained; It has been determined that performing the sintering step in double stages and using binders in the slurry preparation process are more efficient in terms of structural and mechanical properties. The maximum density (2.3972 g/cm3) was reached in the sample that was sintered in double stages and used binder. In addition, the same sample is characterized by a maximum elastic modulus of 5.59 Gpa.

Project Number

20DRP021

References

  • Akin, I., Hotta, M., Sahin, F.C., Yucel, O., Goller, G., Goto, T., 2009. Microstructure and densification of ZrB2-SiC composites prepared by spark plasma sintering, Journal of the European Ceramic Society, 29, 11, 2379–2385.
  • Arai, Y., Inoue, R., Goto K., Kogo, Y., 2019. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review. Ceramics International, 45, 12, 14481–14489. Asl, M.S., Golmohammadi, F., Kakroudi, M. G., Shokouhimehr, M., 2016. Synergetic effects of SiC and Csf in ZrB2-based ceramic composites. Part I: densification behavior, Ceramics International, 42, 3, 4498–4506.
  • Asl, M. S., 2017. Microstructure, hardness and fracture toughness of spark plasma sintered ZrB2–SiC–Cf composites. Ceramics International, 43, 17, 15047–15052.
  • ASTM C 373-88: Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, 2006.
  • Centeno, A., Rocha,V.G., Borrell, A., Blanco, C., Ferna ́ndez, A., 2012. Fabrication of C/SiC composites by combining liquid infiltration process and spark plasma sintering technique. Ceramics International, 38, 2171–2175.
  • Ding, Y., Dong, S., Huang, Z., Jiang, D., 2007. Fabrication of short C fiber-reinforced SiC composites by spark plasma sintering. Ceramics International, 33,1, 101–105.
  • Durand, J.M., Vardavoulias, M., Jeandin, M., 1995. Role of reinforcing ceramic particles in the wear behaviour of polymer-based model composites. Wear, 181-183, 2, 833-839.
  • Ghasali, E., Alizadeh, M., Pakseresht, A.H., Ebadzadeh, T., 2017. Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering. Journal of Asian Ceramic Societies, 5, 4, 472–478.
  • Guo, S., 2013. Thermal and electrical properties of hot-pressed short pitch-based carbon fiber-reinforced ZrB2–SiC matrix composites. Ceramics International. 39, 5, 5733–5740.
  • Hu, H., Wang, Q., Chen, Z., Zhang, C., Zhang, Y., Wang, J., 2010. Preparation and characterization of C/SiC–ZrB2 composites by precursor infiltration and pyrolysis process. Ceramics International, 36, 3, 1011–1016.
  • Nasiri, Z., Mashhadi, M., Abdollahi, A., 2015. Effect of short carbon fiber addition on pressureless densification and mechanical properties of ZrB2–SiC–Csf nanocomposite. International Journal of Refractory Metals and Hard Materials, 51, 216–223.
  • Sciti, D., Murri, N., Medri, V., Zoli, L., 2015. Continuous C fibre composites with a porous ZrB2 Matrix. Materials&Design, 85, 127–134.
  • Shen, Q., Li, R., Wang, C.B., Zhang, L.M., 2003. Densification of Short Carbon Fiber Reinforced Silicon Carbide by Spark Plasma Sintering. Key Engineering Materials, 249, 133- 136.
  • Tamari, N., Tanaka, T., Tanaka, K., Kondoh, I., Kawahara, M., and Tokita, M., 1995. Effect of Spark Plasma Sintering on Densification and Mechanical Properties of Silicon Carbide. Journal of the Ceramic Society of Japan, 103, 1199, 740–742.
  • Tang, S., Deng, J., Wang, S. and Liu, W., 2007. Fabrication and characterization of an ultra high-temperature carbon fiber-reinforced ZrB2-SiC matrix composite. Journal of the American Ceramic Society, 90, 10, 3320–3322.
  • Yang, F., Zhang, X., Han, J., Du, S., 2008-a. Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics. Materials&Design, 29, 9, 817–1820.
  • Yang, F., Zhang, X., Han, J., Du, S., 2008-b. Mechanical properties of short carbon fiber reinforced ZrB2-SiC ceramic matrix composites. Materials Letters, 62, 17–18, 2925–2927.
  • Yang, F., Zhang, X., Han, J., Du, S., 2009. Characterization of hot-pressed short carbon fiber reinforced ZrB2-SiC ultra-high temperature ceramic composites. Journal of Alloys and Compounds, 472, (1–2), 395–399.
  • Zhang, D., Hu, P., Feng, J., Xie, M., Zhao, H., Xinghong Zhang, X., 2019. Characterization and mechanical properties of Cf/ZrB2-SiC composites fabricated by a hybrid technique based on slurry impregnation, polymer infiltration and pyrolysis and low temperature hot pressing. Ceramics International, 45, 5, 5467–5474. Zimmermann, J. W., Hilmas, G.E., Fahrenholtz, W.G., 2008. Thermophysical Properties of ZrB2 and ZrB2–SiC Ceramics. Journal of the American Ceramic Society, 91, 5, 1405–1411. Zoli, L., Sciti, D., 2017. Efficacy of a ZrB2 –SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials. Materials & Design, 113, 207-213.

Spark Plazma Sinterleme Yöntemi ile Üretilen Karbon Fiber Kumaş Katkılı ZrB2-SiC Kompozitlerinin Yapısal ve Mekanik Özellikleri

Year 2023, , 991 - 1000, 31.08.2023
https://doi.org/10.35414/akufemubid.1170658

Abstract

Bu çalışma kapsamında ZrB2-SiC matris fazı içerisine karbon fiber kumaş takviyesi yapılarak seramik matris kompozit malzemeleri üretilmiştir. Kullanılan seramik malzemeler etanol ortamında karıştırılarak bir seramik çamuru hazırlanmış ve bu çamur karbon fiber kumaşlara basınçsız emdirme işlemi yapılarak uygulanmıştır. Seramik malzemelerin kütlece oranı ZrB2-ağ.%20SiC şeklindedir. Bağlayıcının etkisini araştırmak amacıyla bazı kompozitler polivinil butiral (PVB) kullanılarak hazırlanmıştır. Homojen bir seramik çamuru elde etmek amacıyla başlangıç tozları bir polietilen (PET) şişe içerisine eklenmiş ve Si3N4 bilyeler kullanılarak bilyeli değirmende 24 saat boyunca karıştırılmıştır. Hazırlanan seramik çamurunun karbon fiber kumaşlara uygulanma ve kurutma işlemlerinin ardından kompozit malzemeler Spark Plazma Sinterleme (SPS) işlemine tabi tutulmuşlardır. Sinterleme işlemi tek aşamalı ve çift aşamalı olarak gerçekleştirilmiştir. Ulaşılan maksimum sinterleme sıcaklığı 2000 ℃ ve maksimum sıcaklıkta bekleme süresi 30 dk şeklindedir. Uygulanan maksimum basınç ise 50 MPa’dır. Sinterleme sürecinin ardından çeşitli karakterizasyon işlemleri için uygun boyutlarda kesilen numunelerin Arşimet Prensibi ile yoğunluk analizleri, X-ışını toz kırınımı yöntemi ile faz analizleri, taramalı elektron mikroskobu ile mikro yapısal analizleri ve Instron cihazı ile 3 nokta eğme testi analizleri gerçekleştirilmiştir. Elde edilen sonuçlara göre; sinterleme aşamasının çift aşamada gerçekleştirilmesi ve çamur hazırlama sürecinde bağlayıcı kullanılmasının yapısal ve mekanik özellikler açısından daha verimli olduğu saptanmıştır. Maksimum yoğunluğa (2,3972 g/cm3) çift aşamada sinterlenen ve bağlayıcı kullanılan malzemede ulaşılmıştır. Ayrıca aynı malzeme 5,59 GPa’lık maksimum elastik modülü ile karakterize edilir.

Supporting Institution

Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri

Project Number

20DRP021

Thanks

Bu çalışma Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir. Proje No: 20DRP021

References

  • Akin, I., Hotta, M., Sahin, F.C., Yucel, O., Goller, G., Goto, T., 2009. Microstructure and densification of ZrB2-SiC composites prepared by spark plasma sintering, Journal of the European Ceramic Society, 29, 11, 2379–2385.
  • Arai, Y., Inoue, R., Goto K., Kogo, Y., 2019. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review. Ceramics International, 45, 12, 14481–14489. Asl, M.S., Golmohammadi, F., Kakroudi, M. G., Shokouhimehr, M., 2016. Synergetic effects of SiC and Csf in ZrB2-based ceramic composites. Part I: densification behavior, Ceramics International, 42, 3, 4498–4506.
  • Asl, M. S., 2017. Microstructure, hardness and fracture toughness of spark plasma sintered ZrB2–SiC–Cf composites. Ceramics International, 43, 17, 15047–15052.
  • ASTM C 373-88: Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, 2006.
  • Centeno, A., Rocha,V.G., Borrell, A., Blanco, C., Ferna ́ndez, A., 2012. Fabrication of C/SiC composites by combining liquid infiltration process and spark plasma sintering technique. Ceramics International, 38, 2171–2175.
  • Ding, Y., Dong, S., Huang, Z., Jiang, D., 2007. Fabrication of short C fiber-reinforced SiC composites by spark plasma sintering. Ceramics International, 33,1, 101–105.
  • Durand, J.M., Vardavoulias, M., Jeandin, M., 1995. Role of reinforcing ceramic particles in the wear behaviour of polymer-based model composites. Wear, 181-183, 2, 833-839.
  • Ghasali, E., Alizadeh, M., Pakseresht, A.H., Ebadzadeh, T., 2017. Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering. Journal of Asian Ceramic Societies, 5, 4, 472–478.
  • Guo, S., 2013. Thermal and electrical properties of hot-pressed short pitch-based carbon fiber-reinforced ZrB2–SiC matrix composites. Ceramics International. 39, 5, 5733–5740.
  • Hu, H., Wang, Q., Chen, Z., Zhang, C., Zhang, Y., Wang, J., 2010. Preparation and characterization of C/SiC–ZrB2 composites by precursor infiltration and pyrolysis process. Ceramics International, 36, 3, 1011–1016.
  • Nasiri, Z., Mashhadi, M., Abdollahi, A., 2015. Effect of short carbon fiber addition on pressureless densification and mechanical properties of ZrB2–SiC–Csf nanocomposite. International Journal of Refractory Metals and Hard Materials, 51, 216–223.
  • Sciti, D., Murri, N., Medri, V., Zoli, L., 2015. Continuous C fibre composites with a porous ZrB2 Matrix. Materials&Design, 85, 127–134.
  • Shen, Q., Li, R., Wang, C.B., Zhang, L.M., 2003. Densification of Short Carbon Fiber Reinforced Silicon Carbide by Spark Plasma Sintering. Key Engineering Materials, 249, 133- 136.
  • Tamari, N., Tanaka, T., Tanaka, K., Kondoh, I., Kawahara, M., and Tokita, M., 1995. Effect of Spark Plasma Sintering on Densification and Mechanical Properties of Silicon Carbide. Journal of the Ceramic Society of Japan, 103, 1199, 740–742.
  • Tang, S., Deng, J., Wang, S. and Liu, W., 2007. Fabrication and characterization of an ultra high-temperature carbon fiber-reinforced ZrB2-SiC matrix composite. Journal of the American Ceramic Society, 90, 10, 3320–3322.
  • Yang, F., Zhang, X., Han, J., Du, S., 2008-a. Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics. Materials&Design, 29, 9, 817–1820.
  • Yang, F., Zhang, X., Han, J., Du, S., 2008-b. Mechanical properties of short carbon fiber reinforced ZrB2-SiC ceramic matrix composites. Materials Letters, 62, 17–18, 2925–2927.
  • Yang, F., Zhang, X., Han, J., Du, S., 2009. Characterization of hot-pressed short carbon fiber reinforced ZrB2-SiC ultra-high temperature ceramic composites. Journal of Alloys and Compounds, 472, (1–2), 395–399.
  • Zhang, D., Hu, P., Feng, J., Xie, M., Zhao, H., Xinghong Zhang, X., 2019. Characterization and mechanical properties of Cf/ZrB2-SiC composites fabricated by a hybrid technique based on slurry impregnation, polymer infiltration and pyrolysis and low temperature hot pressing. Ceramics International, 45, 5, 5467–5474. Zimmermann, J. W., Hilmas, G.E., Fahrenholtz, W.G., 2008. Thermophysical Properties of ZrB2 and ZrB2–SiC Ceramics. Journal of the American Ceramic Society, 91, 5, 1405–1411. Zoli, L., Sciti, D., 2017. Efficacy of a ZrB2 –SiC matrix in protecting C fibres from oxidation in novel UHTCMC materials. Materials & Design, 113, 207-213.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials
Journal Section Articles
Authors

Aslı Asiye Ağıl 0000-0002-0683-2954

Erhan Ayas 0000-0003-0592-3990

Project Number 20DRP021
Early Pub Date August 29, 2023
Publication Date August 31, 2023
Submission Date September 3, 2022
Published in Issue Year 2023

Cite

APA Ağıl, A. A., & Ayas, E. (2023). Spark Plazma Sinterleme Yöntemi ile Üretilen Karbon Fiber Kumaş Katkılı ZrB2-SiC Kompozitlerinin Yapısal ve Mekanik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(4), 991-1000. https://doi.org/10.35414/akufemubid.1170658
AMA Ağıl AA, Ayas E. Spark Plazma Sinterleme Yöntemi ile Üretilen Karbon Fiber Kumaş Katkılı ZrB2-SiC Kompozitlerinin Yapısal ve Mekanik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2023;23(4):991-1000. doi:10.35414/akufemubid.1170658
Chicago Ağıl, Aslı Asiye, and Erhan Ayas. “Spark Plazma Sinterleme Yöntemi Ile Üretilen Karbon Fiber Kumaş Katkılı ZrB2-SiC Kompozitlerinin Yapısal Ve Mekanik Özellikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 4 (August 2023): 991-1000. https://doi.org/10.35414/akufemubid.1170658.
EndNote Ağıl AA, Ayas E (August 1, 2023) Spark Plazma Sinterleme Yöntemi ile Üretilen Karbon Fiber Kumaş Katkılı ZrB2-SiC Kompozitlerinin Yapısal ve Mekanik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 4 991–1000.
IEEE A. A. Ağıl and E. Ayas, “Spark Plazma Sinterleme Yöntemi ile Üretilen Karbon Fiber Kumaş Katkılı ZrB2-SiC Kompozitlerinin Yapısal ve Mekanik Özellikleri”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 4, pp. 991–1000, 2023, doi: 10.35414/akufemubid.1170658.
ISNAD Ağıl, Aslı Asiye - Ayas, Erhan. “Spark Plazma Sinterleme Yöntemi Ile Üretilen Karbon Fiber Kumaş Katkılı ZrB2-SiC Kompozitlerinin Yapısal Ve Mekanik Özellikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/4 (August 2023), 991-1000. https://doi.org/10.35414/akufemubid.1170658.
JAMA Ağıl AA, Ayas E. Spark Plazma Sinterleme Yöntemi ile Üretilen Karbon Fiber Kumaş Katkılı ZrB2-SiC Kompozitlerinin Yapısal ve Mekanik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:991–1000.
MLA Ağıl, Aslı Asiye and Erhan Ayas. “Spark Plazma Sinterleme Yöntemi Ile Üretilen Karbon Fiber Kumaş Katkılı ZrB2-SiC Kompozitlerinin Yapısal Ve Mekanik Özellikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 4, 2023, pp. 991-1000, doi:10.35414/akufemubid.1170658.
Vancouver Ağıl AA, Ayas E. Spark Plazma Sinterleme Yöntemi ile Üretilen Karbon Fiber Kumaş Katkılı ZrB2-SiC Kompozitlerinin Yapısal ve Mekanik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(4):991-1000.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.