Research Article
BibTex RIS Cite

Valorization of Macroalgae (Microcystis Aeruginosa) and Microalgae (Spirulina Platensis) Species as Catalysts in Hydrogen Production and Comparison of Performances

Year 2022, , 1451 - 1458, 28.12.2022
https://doi.org/10.35414/akufemubid.1181026

Abstract

In this study, hydrogen production was carried out from NaBH4 by methanolysis using Spirulina platensis microalgae and Microcystis aeruginosa macroalgae species. Microalgae and macroalgae species were treated with various acids and their catalytic performances were compared. After determining the most efficient catalyst type, the effect of different reaction parameters on hydrogen production was investigated. For this, methanolysis experiments were carried out at different NaBH4 concentrations, different catalyst amounts and various experimental temperatures. Today, where the search for renewable and clean energy sources that can replace fossil energy sources is gaining momentum, the evaluation of waste materials with no economic value in this field is very interesting in terms of providing double benefits. In this study, it is seen that such materials can be used successfully in this field. In addition, the catalytic performances of algae species are given comparatively and the results are interpreted.

References

  • Akdemir, M., Karakaş, D. E. and Kaya, M., 2022. Synthesis of a Dual‐Functionalized Carbon‐Based Material as Catalyst and Supercapacitor for Efficient Hydrogen Production and Energy Storage: Pd‐Supported Pomegranate Peel. Energy Storage, 4, e284.
  • Ali, F., Khan, S. B. and Asiri, A. M., 2019. Chitosan Coated Cellulose Cotton Fibers as Catalyst for the H2 Production from Nabh4 Methanolysis. International Journal of Hydrogen Energy, 44, 4143-4155.
  • Alrikabi, N., 2014. Renewable Energy Types. Journal of Clean Energy Technologies, 2, 61-64.
  • Avcı Hansu, T., 2021. Study of the Activity of a Novel Green Catalyst Used in the Production of Hydrogen from Methanolysis of Sodium Borohydride. MANAS Journal of Engineering, 9, 115-121.
  • Bekirogullari, M., Abut, S., Duman, F. and Hansu, T. A., 2021. Lake Sediment Based Catalyst for Hydrogen Generation Via Methanolysis of Sodium Borohydride: An Optimization Study with Artificial Neural Network Modelling. Reaction Kinetics, Mechanisms and Catalysis, 134, 57-74.
  • Bull, S. R., 2001. Renewable Energy Today and Tomorrow. Proceedings of the IEEE, 89, 1216-1226.
  • Duman, F., Atelge, M., Kaya, M., Atabani, A., Kumar, G., Sahin, U. and Unalan, S., 2020. A Novel Microcystis Aeruginosa Supported Manganese Catalyst for Hydrogen Generation through Methanolysis of Sodium Borohydride. International Journal of Hydrogen Energy, 45, 12755-12765.
  • Fangaj, E. and Ceyhan, A. A., 2020. Apricot Kernel Shell Waste Treated with Phosphoric Acid Used as a Green, Metal-Free Catalyst for Hydrogen Generation from Hydrolysis of Sodium Borohydride. International Journal of Hydrogen Energy, 45, 17104-17117.
  • Güney, T., 2019. Renewable Energy, Non-Renewable Energy and Sustainable Development. International Journal of Sustainable Development & World Ecology, 26, 389-397.
  • Hansen, K., Breyer, C. and Lund, H., 2019. Status and Perspectives on 100% Renewable Energy Systems. Energy, 175, 471-480.
  • Inal, I. I. G., Akdemir, M. and Kaya, M., 2021. Microcystis Aeruginosa Supported-Mn Catalyst as a New Promising Supercapacitor Electrode: A Dual Functional Material. International Journal of Hydrogen Energy, 46, 21534-21541.
  • Karakaş, D. E., Akdemir, M., Atabani, A. and Kaya, M., 2021. A Dual Functional Material: Spirulina Platensis Waste-Supported Pd-Co Catalyst as a Novel Promising Supercapacitor Electrode. Fuel, 304, 121334.
  • Kaya, M., 2019. Nib Loaded Acetic Acid Treated Microalgae Strain (Spirulina Platensis) to Use as a Catalyst for Hydrogen Generation from Sodium Borohydride Methanolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41, 2549-2560.
  • Kaya, M., 2020. Production of Metal-Free Catalyst from Defatted Spent Coffee Ground for Hydrogen Generation by Sodium Borohyride Methanolysis. International Journal of Hydrogen Energy, 45, 12731-12742.
  • Kaya, M. and Bekirogullari, M., 2019a. Investigation of Hydrogen Production from Sodium Borohydride Methanolysis in the Presence of Al2O3/Spirulina Platensis Supported Co Catalyst. Avrupa Bilim ve Teknoloji Dergisi, 16, 69-76.
  • Kaya, M. and Bekiroğulları, M., 2019b. Sodium Borohydride Methanolysis in the Presence of a Carbon Supported Co-B Catalysts Produced from Agricultural Waste. Türkiye Tarımsal Araștırmalar Dergisi, 6, 80-86.
  • Kaya, M., Bekiroğullari, M. and Saka, C., 2019. Highly Efficient Cob Catalyst Using a Support Material Based on Spirulina Microalgal Strain Treated with Zncl2 for Hydrogen Generation Via Sodium Borohydride Methanolysis. International Journal of Energy Research, 43, 4243-4252.
  • Özarslan, S., Atelge, M. R., Kaya, M. and Ünalan, S., 2021. A Novel Tea Factory Waste Metal-Free Catalyst as Promising Supercapacitor Electrode for Hydrogen Production and Energy Storage: A Dual Functional Material. Fuel, 305, 121578.
  • Pao, H. T. and Fu, H. C., 2013. Renewable Energy, Non-Renewable Energy and Economic Growth in Brazil. Renewable and Sustainable Energy Reviews, 25, 381-392.
  • Saka, C., 2021. Oxygen and Nitrogen-Doped Metal-Free Microalgae Carbon Nanoparticles for Efficient Hydrogen Production from Sodium Borohydride in Methanol. International Journal of Hydrogen Energy, 46, 26298-26307.
  • Saka, C., Kaya, M. and Bekiroğullari, M., 2020a. Spirulina Microalgal Strain as Efficient a Metal‐Free Catalyst to Generate Hydrogen Via Methanolysis of Sodium Borohydride. International Journal of Energy Research, 44, 402-410.
  • Saka, C., Kaya, M. and Bekiroğullari, M., 2020b. Spirulina Platensis Microalgae Strain Modified with Phosphoric Acid as a Novel Support Material for Co–B Catalysts: Its Application to Hydrogen Production. International Journal of Hydrogen Energy, 45, 2872-2883.
  • Umegaki, T., Yan, J. M., Zhang, X.-B., Shioyama, H., Kuriyama, N. and Xu, Q., 2009. Boron-and Nitrogen-Based Chemical Hydrogen Storage Materials. International Journal of Hydrogen Energy, 34, 2303-2311.
  • Wang, T., Jiang, T., Zhang, H. and Zhao, Y., 2022. Advances in Catalysts for Hydrogen Production by Methanolysis of Sodium Borohydride. International Journal of Hydrogen Energy, 47, 14589-14610.
  • Zhang, Y.-h., Jia, Z.-c., Yuan, Z.-m., Yang, T., Qi, Y. and Zhao, D.-l., 2015. Development and Application of Hydrogen Storage. Journal of Iron and Steel Research International, 22, 757-770.

Makroalg (Microcystis aeruginosa) ve Mikroalg (Spirulina platensis) Türlerinin Hidrojen Üretiminde Katalizör Olarak Değerlendirilmesi ve Performanslarının Kıyaslanması

Year 2022, , 1451 - 1458, 28.12.2022
https://doi.org/10.35414/akufemubid.1181026

Abstract

Bu çalışmada, Spirulina platensis mikroalg ve Microcystis aeruginosa makroalg türleri kullanılarak NaBH4’den metanoliz yoluyla hidrojen üretimi gerçekleştirilmiştir. Mikroalg ve makroalg türleri, çeşitli asitlerle muamele edilmiş ve katalitik performansları karşılaştırmalı olarak incelenmiştir. En verimli katalizör türünün belirlenmesinin ardından farklı reaksiyon parametrelerinin hidrojen üretimine etkisi araştırılmıştır. Bunun için, farklı NaBH4 konsantrasyonları, farklı katalizör miktarları ve çeşitli deney sıcaklıklarında metanoliz deneyleri yapılmıştır. Fosil enerji kaynaklarının yerini alabilecek, yenilenebilir ve temiz enerji kaynağı arayışının hız kazandığı günümüzde, ekonomik değeri olmayan atık malzemelerin bu alanda değerlendirilmesi iki katı yarar sağlamak yönünden oldukça ilgi çekicidir. Bu çalışmada, bu türden malzemelerin bu alanda başarıyla kullanılabileceği görülmektedir. Ayrıca alg türlerinin katalitik performanslarına karşılaştırmalı olarak yer verilmiş ve sonuçlar yorumlanmıştır.

References

  • Akdemir, M., Karakaş, D. E. and Kaya, M., 2022. Synthesis of a Dual‐Functionalized Carbon‐Based Material as Catalyst and Supercapacitor for Efficient Hydrogen Production and Energy Storage: Pd‐Supported Pomegranate Peel. Energy Storage, 4, e284.
  • Ali, F., Khan, S. B. and Asiri, A. M., 2019. Chitosan Coated Cellulose Cotton Fibers as Catalyst for the H2 Production from Nabh4 Methanolysis. International Journal of Hydrogen Energy, 44, 4143-4155.
  • Alrikabi, N., 2014. Renewable Energy Types. Journal of Clean Energy Technologies, 2, 61-64.
  • Avcı Hansu, T., 2021. Study of the Activity of a Novel Green Catalyst Used in the Production of Hydrogen from Methanolysis of Sodium Borohydride. MANAS Journal of Engineering, 9, 115-121.
  • Bekirogullari, M., Abut, S., Duman, F. and Hansu, T. A., 2021. Lake Sediment Based Catalyst for Hydrogen Generation Via Methanolysis of Sodium Borohydride: An Optimization Study with Artificial Neural Network Modelling. Reaction Kinetics, Mechanisms and Catalysis, 134, 57-74.
  • Bull, S. R., 2001. Renewable Energy Today and Tomorrow. Proceedings of the IEEE, 89, 1216-1226.
  • Duman, F., Atelge, M., Kaya, M., Atabani, A., Kumar, G., Sahin, U. and Unalan, S., 2020. A Novel Microcystis Aeruginosa Supported Manganese Catalyst for Hydrogen Generation through Methanolysis of Sodium Borohydride. International Journal of Hydrogen Energy, 45, 12755-12765.
  • Fangaj, E. and Ceyhan, A. A., 2020. Apricot Kernel Shell Waste Treated with Phosphoric Acid Used as a Green, Metal-Free Catalyst for Hydrogen Generation from Hydrolysis of Sodium Borohydride. International Journal of Hydrogen Energy, 45, 17104-17117.
  • Güney, T., 2019. Renewable Energy, Non-Renewable Energy and Sustainable Development. International Journal of Sustainable Development & World Ecology, 26, 389-397.
  • Hansen, K., Breyer, C. and Lund, H., 2019. Status and Perspectives on 100% Renewable Energy Systems. Energy, 175, 471-480.
  • Inal, I. I. G., Akdemir, M. and Kaya, M., 2021. Microcystis Aeruginosa Supported-Mn Catalyst as a New Promising Supercapacitor Electrode: A Dual Functional Material. International Journal of Hydrogen Energy, 46, 21534-21541.
  • Karakaş, D. E., Akdemir, M., Atabani, A. and Kaya, M., 2021. A Dual Functional Material: Spirulina Platensis Waste-Supported Pd-Co Catalyst as a Novel Promising Supercapacitor Electrode. Fuel, 304, 121334.
  • Kaya, M., 2019. Nib Loaded Acetic Acid Treated Microalgae Strain (Spirulina Platensis) to Use as a Catalyst for Hydrogen Generation from Sodium Borohydride Methanolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41, 2549-2560.
  • Kaya, M., 2020. Production of Metal-Free Catalyst from Defatted Spent Coffee Ground for Hydrogen Generation by Sodium Borohyride Methanolysis. International Journal of Hydrogen Energy, 45, 12731-12742.
  • Kaya, M. and Bekirogullari, M., 2019a. Investigation of Hydrogen Production from Sodium Borohydride Methanolysis in the Presence of Al2O3/Spirulina Platensis Supported Co Catalyst. Avrupa Bilim ve Teknoloji Dergisi, 16, 69-76.
  • Kaya, M. and Bekiroğulları, M., 2019b. Sodium Borohydride Methanolysis in the Presence of a Carbon Supported Co-B Catalysts Produced from Agricultural Waste. Türkiye Tarımsal Araștırmalar Dergisi, 6, 80-86.
  • Kaya, M., Bekiroğullari, M. and Saka, C., 2019. Highly Efficient Cob Catalyst Using a Support Material Based on Spirulina Microalgal Strain Treated with Zncl2 for Hydrogen Generation Via Sodium Borohydride Methanolysis. International Journal of Energy Research, 43, 4243-4252.
  • Özarslan, S., Atelge, M. R., Kaya, M. and Ünalan, S., 2021. A Novel Tea Factory Waste Metal-Free Catalyst as Promising Supercapacitor Electrode for Hydrogen Production and Energy Storage: A Dual Functional Material. Fuel, 305, 121578.
  • Pao, H. T. and Fu, H. C., 2013. Renewable Energy, Non-Renewable Energy and Economic Growth in Brazil. Renewable and Sustainable Energy Reviews, 25, 381-392.
  • Saka, C., 2021. Oxygen and Nitrogen-Doped Metal-Free Microalgae Carbon Nanoparticles for Efficient Hydrogen Production from Sodium Borohydride in Methanol. International Journal of Hydrogen Energy, 46, 26298-26307.
  • Saka, C., Kaya, M. and Bekiroğullari, M., 2020a. Spirulina Microalgal Strain as Efficient a Metal‐Free Catalyst to Generate Hydrogen Via Methanolysis of Sodium Borohydride. International Journal of Energy Research, 44, 402-410.
  • Saka, C., Kaya, M. and Bekiroğullari, M., 2020b. Spirulina Platensis Microalgae Strain Modified with Phosphoric Acid as a Novel Support Material for Co–B Catalysts: Its Application to Hydrogen Production. International Journal of Hydrogen Energy, 45, 2872-2883.
  • Umegaki, T., Yan, J. M., Zhang, X.-B., Shioyama, H., Kuriyama, N. and Xu, Q., 2009. Boron-and Nitrogen-Based Chemical Hydrogen Storage Materials. International Journal of Hydrogen Energy, 34, 2303-2311.
  • Wang, T., Jiang, T., Zhang, H. and Zhao, Y., 2022. Advances in Catalysts for Hydrogen Production by Methanolysis of Sodium Borohydride. International Journal of Hydrogen Energy, 47, 14589-14610.
  • Zhang, Y.-h., Jia, Z.-c., Yuan, Z.-m., Yang, T., Qi, Y. and Zhao, D.-l., 2015. Development and Application of Hydrogen Storage. Journal of Iron and Steel Research International, 22, 757-770.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Articles
Authors

Saliha Özarslan 0000-0001-5696-9644

Mustafa Kaya 0000-0002-0622-3163

Mustafa Durgun 0000-0003-3012-7582

Publication Date December 28, 2022
Submission Date September 27, 2022
Published in Issue Year 2022

Cite

APA Özarslan, S., Kaya, M., & Durgun, M. (2022). Makroalg (Microcystis aeruginosa) ve Mikroalg (Spirulina platensis) Türlerinin Hidrojen Üretiminde Katalizör Olarak Değerlendirilmesi ve Performanslarının Kıyaslanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(6), 1451-1458. https://doi.org/10.35414/akufemubid.1181026
AMA Özarslan S, Kaya M, Durgun M. Makroalg (Microcystis aeruginosa) ve Mikroalg (Spirulina platensis) Türlerinin Hidrojen Üretiminde Katalizör Olarak Değerlendirilmesi ve Performanslarının Kıyaslanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2022;22(6):1451-1458. doi:10.35414/akufemubid.1181026
Chicago Özarslan, Saliha, Mustafa Kaya, and Mustafa Durgun. “Makroalg (Microcystis Aeruginosa) Ve Mikroalg (Spirulina Platensis) Türlerinin Hidrojen Üretiminde Katalizör Olarak Değerlendirilmesi Ve Performanslarının Kıyaslanması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 6 (December 2022): 1451-58. https://doi.org/10.35414/akufemubid.1181026.
EndNote Özarslan S, Kaya M, Durgun M (December 1, 2022) Makroalg (Microcystis aeruginosa) ve Mikroalg (Spirulina platensis) Türlerinin Hidrojen Üretiminde Katalizör Olarak Değerlendirilmesi ve Performanslarının Kıyaslanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 6 1451–1458.
IEEE S. Özarslan, M. Kaya, and M. Durgun, “Makroalg (Microcystis aeruginosa) ve Mikroalg (Spirulina platensis) Türlerinin Hidrojen Üretiminde Katalizör Olarak Değerlendirilmesi ve Performanslarının Kıyaslanması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 6, pp. 1451–1458, 2022, doi: 10.35414/akufemubid.1181026.
ISNAD Özarslan, Saliha et al. “Makroalg (Microcystis Aeruginosa) Ve Mikroalg (Spirulina Platensis) Türlerinin Hidrojen Üretiminde Katalizör Olarak Değerlendirilmesi Ve Performanslarının Kıyaslanması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/6 (December 2022), 1451-1458. https://doi.org/10.35414/akufemubid.1181026.
JAMA Özarslan S, Kaya M, Durgun M. Makroalg (Microcystis aeruginosa) ve Mikroalg (Spirulina platensis) Türlerinin Hidrojen Üretiminde Katalizör Olarak Değerlendirilmesi ve Performanslarının Kıyaslanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:1451–1458.
MLA Özarslan, Saliha et al. “Makroalg (Microcystis Aeruginosa) Ve Mikroalg (Spirulina Platensis) Türlerinin Hidrojen Üretiminde Katalizör Olarak Değerlendirilmesi Ve Performanslarının Kıyaslanması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 6, 2022, pp. 1451-8, doi:10.35414/akufemubid.1181026.
Vancouver Özarslan S, Kaya M, Durgun M. Makroalg (Microcystis aeruginosa) ve Mikroalg (Spirulina platensis) Türlerinin Hidrojen Üretiminde Katalizör Olarak Değerlendirilmesi ve Performanslarının Kıyaslanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(6):1451-8.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.