Research Article
BibTex RIS Cite

Nikel Partiküller ile Takviye Edilmiş Magnezyum Matrisli Kompozitlerin Üretimi ve Karakterizasyonu

Year 2023, , 1318 - 1327, 30.10.2023
https://doi.org/10.35414/akufemubid.1207488

Abstract

Metal matrisli kompozit malzemeler otomotiv endüstrisinde yaygın olarak kullanılmaktadır. Düşük
ağırlığın son derece önemli olduğu bu alanda magnezyum esaslıların tüketim hacimleri her geçen gün
artmaktadır. Fakat oda sıcaklığında gözlenen düşük süneklilikleri ve yetersiz dayanımları hem otomotiv
sektöründe hem de endüstride demir, çelik ve alüminyuma göre kullanımlarını önemli oranda
kısıtlamaktadır. Mevcut çalışmada, hacimce %0-%10 oranlarında, mükemmel süneklilik, iyi tokluk ve
yüksek elastik modül gibi üstün özelliklere sahip nikel mikro partiküller ile takviye edilmiş magnezyum
matrisli kompozit malzemeler toz metalürjisi yöntemlerinden tek eksenli sıcak presleme tekniği ile imal
edilmiştir. Üretim parametrelerinin optimizasyonu sonucu tüm numunelerde yaklaşık olarak tam
yoğunluğa ulaşılmış ve gözenek içermedikleri tespit edilmiştir. Mikroyapısal incelemelerde α (Mg) ve Ni
fazlarına ilaveten Mg2Ni fazı da gözlenmiştir. Bu bileşik, ayrıca, XRD analizlerinde de belirlenmiştir.
Güçlendirici ilavesi ile matris malzemesinin oda sıcaklığı akma ve basma dayanımlarında sırasıyla %37
ve %35 oranlarında iyileşmeler elde edilmiş ve tüm test sıcaklıklarında saf magnezyuma göre daha
yüksek değerlere sahip olduğu görülmüştür. Kompozit malzemeler gerek mekanik özellikleri gerekse de
düşük yoğunlukları ile otomotiv ve endüstride kullanılan geleneksel malzemelere önemli bir alternatif
teşkil ettiği saptanmıştır.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Birimi Başkanlığı (BAP)

Project Number

FHD-2022-10019

Thanks

Bu çalışmaya maddi olarak sağladığı katkıdan dolayı Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Birimi Başkanlığı’na (Proje No: FHD-2022-10019), teşekkür ederim.

References

  • Anand, T.J.S., 2012. Nickel as an alternative automotive body material. J. Mech. Eng, 2, 187-197.
  • Aydogmus, T., 2015. Processing of interpenetrating Mg–TiNi composites by spark plasma sintering. Materials Science and Engineering: A, 624, 261-270.
  • Borkar, T., Mohseni, H., Hwang, J., Scharf, T. W., Tiley, J. S., Hong, S. H., Banerjee, R., 2015. Excellent strength–ductility combination in nickel-graphite nanoplatelet (GNP/Ni) nanocomposites. Journal of Alloys and Compounds, 646, 135-144.
  • Chawla, K.K., 2012. Composite materials: science and engineering, Springer Science & Business Media, 3-250.
  • Ceschini, L., Dahle, A., Gupta, M., Jarfors, A.E.W., Jayalakshmi, S., Morri, A., Singh, R.A. 2017. Aluminum and magnesium metal matrix nanocomposites, Springer, 1-151.
  • Esen, Z., 2012. The effect of processing routes on the structure and properties of magnesium–TiNi composites. Materials Science and Engineering: A, 558, 632-640.
  • Gopagoni, S., Hwang, J. Y., Singh, A. R. P., Mensah, B. A., Bunce, N., Tiley, J., Banerjee, R., 2011. Microstructural evolution in laser deposited nickel–titanium–carbon in situ metal matrix composites. Journal of Alloys and Compounds, 509(4), 1255-1260.
  • Hassan, S.F., Gupta, M., 2002a. Development of a novel magnesium/nickel composite with improved mechanical properties. Journal of alloys and compounds, 335(1-2), L10-L15.
  • Hassan, S.F., Gupta, M., 2002b. Development of high strength magnesium based composites using elemental nickel particulates as reinforcement. Journal of Materials Science, 37(12), 2467-2474.
  • Hassan, S.F., Nasirudeen, O.O., Al-Aqeeli, N., Saheb, N., Patel, F., Baig, M.M.A., 2015. Magnesium–nickel composite: Preparation, microstructure and mechanical properties. Journal of Alloys and Compounds, 646, 333-338.
  • Iturbe-García, J. L., García-Núñez, M.R., López-Muño, B.E., 2010. Synthesis of the Mg2Ni alloy prepared by mechanical alloying using a high energy ball mill. Journal of the Mexican Chemical Society, 54(1), 46-50.
  • Kelen, F., 2014. Motorlu taşıt emisyonlarının insan sağlığı ve çevre üzerine etkileri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(1-2), 80-87.
  • Kelen, F., 2018. TiNi ile takviye edilmiş Mg/AZ91 matrisli kompozitlerin üretimi ve karakterizasyonu. Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, 197.
  • Kelen, F., 2023a. Novel Magnesium Matrix Hybrid Composites Manufactured Through Powder Metallurgy Technique. Materials Today Communications, 106348. Kelen, F., 2023b. Fabrication, microstructure and mechanical properties of novel titanium and nickel micro-particulates reinforced AZ91D magnesium alloy metal matrix hybrid composites, Journal of Alloys and Compounds, 171999.
  • Kelen, F., Gavgali, M., Aydogmus, T., 2018. Microstructure and mechanical properties of a novel TiNi particulate reinforced AZ91 metal matrix composite. Materials Letters, 233, 12-15.
  • Kelen, F., 2021. Magnezyum ve alaşımlarının otomotiv endüstrisindeki önemi ve uygulamaları. Journal of the Institute of Science and Technology, 11(1), 548-562.
  • Meher, A., Mahapatra, M.M., Samal, P., Vundavilli, P.R. 2022. A review on manufacturability of magnesium matrix composites: Processing, tribology, joining, and machining, CIRP Journal of Manufacturing Science and Technology, 39, 134-158.
  • Nguyen, Q.B., Gupta, M., 2010. Enhancing mechanical response of AZ31B using Cu+ nano-Al2O3 addition, Materials Science and Engineering, A, 527(6), 1411-1416.
  • Olalekan, O.N., Abdul Samad, M., Hassan, S.F., Elhady, M.M.I., 2021. Tribological evaluations of spark plasma sintered Mg–Ni composite. Tribology-Materials, Surfaces & Interfaces, 1-9.
  • Scharf, T.W., Neira, A., Hwang, J.Y., Tiley, J., Banerjee, R., 2009. Self-lubricating carbon nanotube reinforced nickel matrix composites. Journal of applied physics, 106(1), 013508.
  • Shao, H., Liu, T., Li, X., Zhang, L., 2003a. Preparation of Mg2Ni intermetallic compound from nanoparticles. Scripta Materialia, 49(6), 595-599.
  • Shao, H., Liu, T., Li, X., 2003b. Preparation of the Mg2Ni compound from ultrafine particles and its hydrogen storage properties. Nanotechnology, 14(3), L1.
  • Shao, H., Xin, G., Li, X., Akiba, E., 2013. Thermodynamic property study of nanostructured mg-H, mg-Ni-H, and mg-cu-H systems by high pressure DSC method. Journal of Nanomaterials, 2013.
  • Singh, A.R.P., Hwang, J.Y., Scharf, T.W., Tiley, J., Banerjee, R. 2010. Bulk nickel–carbon nanotube nanocomposites by laser deposition. Materials Science and Technology, 26(11), 1393-1400.
  • Trojanová, Z., Gärtnerová, V., Jäger, A., Námešný, A., Chalupová, M., Palček, P., Lukáč, P., 2009. Mechanical and fracture properties of an AZ91 Magnesium alloy reinforced by Si and SiC particles, Composites Science and technology, 69(13), 2256-2264.
  • Ueda, T.T., Tsukahara, M., Kamiya, Y., Kikuchi, S. 2005. Preparation and hydrogen storage properties of Mg–Ni–Mg2Ni laminate composites. Journal of Alloys and Compounds, 386(1-2), 253-257.
  • Yan, B., Li, G., 2005. Mg alloy matrix composite reinforced with TiNi continuous fiber prepared by ball-milling/hot-pressing. Composites Part A: Applied Science and Manufacturing, 36(11), 1590-1594.
  • Yang, H., Chen, X., Huang, G., Song, J., She, J., Tan, J., Pan, F., 2022. Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: Review and perspective, Journal of Magnesium and Alloys, 10, 2311-2323.
  • Zhou, Y., Sun, Z., 2000. Temperature fluctuation/hot pressing synthesis of Ti3SiC2. Journal of Materials Science, 35(17), 4343-4346.
  • Wang, W., Fu, Z., Wang, H., Yuan, R., 2002. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. Journal of the European Ceramic Society, 22(7), 1045-1049.
  • Wen, J., de Rango, P., Allain, N., Laversenne, L., Grosdidier, T., 2020. Improving hydrogen storage performance of Mg-based alloy through microstructure optimization. Journal of Power Sources, 480, 228823.

Processing and Characterization of Magnesium Matrix Composites Reinforced by Nickel Particles

Year 2023, , 1318 - 1327, 30.10.2023
https://doi.org/10.35414/akufemubid.1207488

Abstract

Metal matrix composite materials are prevalently used in the automotive industry. In that of those
applications in which lightness is a critical parameter, consumption volumes of magnesium-based
materials are continuously increasing. However, their low ductility and insufficient strengths observed
at room temperature significantly limit their use compared to iron, steel and aluminum both in the
automotive and in industry. In the present study, composites reinforced with nickel microparticles,
which have superior properties like excellent ductility, good toughness and high elastic modulus, at
volumetric ratios of 0%-10% were successfully produced by the uniaxial hot pressing technique that is
the powder metallurgy methods. As a result of the optimized production parameters, full density was
almost reached in all samples and it was determined that they did porosity free. In addition to α (Mg)
and Ni phases, Mg2Ni phase was also observed in microstructural analysis. This compound was also
identified in XRD analysis. By the addition of reinforcement, 37% and 35% improvements were obtained
in the room temperature yield and compressive strengths of the matrix material, respectively, and also,
it was observed to have higher values than pure magnesium at all test temperatures. The composite
materials, with their mechanical properties and low densities, have been established to constitute an
important alternative to traditional materials used in the automotive and industry.

Project Number

FHD-2022-10019

References

  • Anand, T.J.S., 2012. Nickel as an alternative automotive body material. J. Mech. Eng, 2, 187-197.
  • Aydogmus, T., 2015. Processing of interpenetrating Mg–TiNi composites by spark plasma sintering. Materials Science and Engineering: A, 624, 261-270.
  • Borkar, T., Mohseni, H., Hwang, J., Scharf, T. W., Tiley, J. S., Hong, S. H., Banerjee, R., 2015. Excellent strength–ductility combination in nickel-graphite nanoplatelet (GNP/Ni) nanocomposites. Journal of Alloys and Compounds, 646, 135-144.
  • Chawla, K.K., 2012. Composite materials: science and engineering, Springer Science & Business Media, 3-250.
  • Ceschini, L., Dahle, A., Gupta, M., Jarfors, A.E.W., Jayalakshmi, S., Morri, A., Singh, R.A. 2017. Aluminum and magnesium metal matrix nanocomposites, Springer, 1-151.
  • Esen, Z., 2012. The effect of processing routes on the structure and properties of magnesium–TiNi composites. Materials Science and Engineering: A, 558, 632-640.
  • Gopagoni, S., Hwang, J. Y., Singh, A. R. P., Mensah, B. A., Bunce, N., Tiley, J., Banerjee, R., 2011. Microstructural evolution in laser deposited nickel–titanium–carbon in situ metal matrix composites. Journal of Alloys and Compounds, 509(4), 1255-1260.
  • Hassan, S.F., Gupta, M., 2002a. Development of a novel magnesium/nickel composite with improved mechanical properties. Journal of alloys and compounds, 335(1-2), L10-L15.
  • Hassan, S.F., Gupta, M., 2002b. Development of high strength magnesium based composites using elemental nickel particulates as reinforcement. Journal of Materials Science, 37(12), 2467-2474.
  • Hassan, S.F., Nasirudeen, O.O., Al-Aqeeli, N., Saheb, N., Patel, F., Baig, M.M.A., 2015. Magnesium–nickel composite: Preparation, microstructure and mechanical properties. Journal of Alloys and Compounds, 646, 333-338.
  • Iturbe-García, J. L., García-Núñez, M.R., López-Muño, B.E., 2010. Synthesis of the Mg2Ni alloy prepared by mechanical alloying using a high energy ball mill. Journal of the Mexican Chemical Society, 54(1), 46-50.
  • Kelen, F., 2014. Motorlu taşıt emisyonlarının insan sağlığı ve çevre üzerine etkileri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(1-2), 80-87.
  • Kelen, F., 2018. TiNi ile takviye edilmiş Mg/AZ91 matrisli kompozitlerin üretimi ve karakterizasyonu. Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, 197.
  • Kelen, F., 2023a. Novel Magnesium Matrix Hybrid Composites Manufactured Through Powder Metallurgy Technique. Materials Today Communications, 106348. Kelen, F., 2023b. Fabrication, microstructure and mechanical properties of novel titanium and nickel micro-particulates reinforced AZ91D magnesium alloy metal matrix hybrid composites, Journal of Alloys and Compounds, 171999.
  • Kelen, F., Gavgali, M., Aydogmus, T., 2018. Microstructure and mechanical properties of a novel TiNi particulate reinforced AZ91 metal matrix composite. Materials Letters, 233, 12-15.
  • Kelen, F., 2021. Magnezyum ve alaşımlarının otomotiv endüstrisindeki önemi ve uygulamaları. Journal of the Institute of Science and Technology, 11(1), 548-562.
  • Meher, A., Mahapatra, M.M., Samal, P., Vundavilli, P.R. 2022. A review on manufacturability of magnesium matrix composites: Processing, tribology, joining, and machining, CIRP Journal of Manufacturing Science and Technology, 39, 134-158.
  • Nguyen, Q.B., Gupta, M., 2010. Enhancing mechanical response of AZ31B using Cu+ nano-Al2O3 addition, Materials Science and Engineering, A, 527(6), 1411-1416.
  • Olalekan, O.N., Abdul Samad, M., Hassan, S.F., Elhady, M.M.I., 2021. Tribological evaluations of spark plasma sintered Mg–Ni composite. Tribology-Materials, Surfaces & Interfaces, 1-9.
  • Scharf, T.W., Neira, A., Hwang, J.Y., Tiley, J., Banerjee, R., 2009. Self-lubricating carbon nanotube reinforced nickel matrix composites. Journal of applied physics, 106(1), 013508.
  • Shao, H., Liu, T., Li, X., Zhang, L., 2003a. Preparation of Mg2Ni intermetallic compound from nanoparticles. Scripta Materialia, 49(6), 595-599.
  • Shao, H., Liu, T., Li, X., 2003b. Preparation of the Mg2Ni compound from ultrafine particles and its hydrogen storage properties. Nanotechnology, 14(3), L1.
  • Shao, H., Xin, G., Li, X., Akiba, E., 2013. Thermodynamic property study of nanostructured mg-H, mg-Ni-H, and mg-cu-H systems by high pressure DSC method. Journal of Nanomaterials, 2013.
  • Singh, A.R.P., Hwang, J.Y., Scharf, T.W., Tiley, J., Banerjee, R. 2010. Bulk nickel–carbon nanotube nanocomposites by laser deposition. Materials Science and Technology, 26(11), 1393-1400.
  • Trojanová, Z., Gärtnerová, V., Jäger, A., Námešný, A., Chalupová, M., Palček, P., Lukáč, P., 2009. Mechanical and fracture properties of an AZ91 Magnesium alloy reinforced by Si and SiC particles, Composites Science and technology, 69(13), 2256-2264.
  • Ueda, T.T., Tsukahara, M., Kamiya, Y., Kikuchi, S. 2005. Preparation and hydrogen storage properties of Mg–Ni–Mg2Ni laminate composites. Journal of Alloys and Compounds, 386(1-2), 253-257.
  • Yan, B., Li, G., 2005. Mg alloy matrix composite reinforced with TiNi continuous fiber prepared by ball-milling/hot-pressing. Composites Part A: Applied Science and Manufacturing, 36(11), 1590-1594.
  • Yang, H., Chen, X., Huang, G., Song, J., She, J., Tan, J., Pan, F., 2022. Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: Review and perspective, Journal of Magnesium and Alloys, 10, 2311-2323.
  • Zhou, Y., Sun, Z., 2000. Temperature fluctuation/hot pressing synthesis of Ti3SiC2. Journal of Materials Science, 35(17), 4343-4346.
  • Wang, W., Fu, Z., Wang, H., Yuan, R., 2002. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. Journal of the European Ceramic Society, 22(7), 1045-1049.
  • Wen, J., de Rango, P., Allain, N., Laversenne, L., Grosdidier, T., 2020. Improving hydrogen storage performance of Mg-based alloy through microstructure optimization. Journal of Power Sources, 480, 228823.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials
Journal Section Articles
Authors

Fevzi Kelen 0000-0003-3900-4503

Project Number FHD-2022-10019
Early Pub Date October 27, 2023
Publication Date October 30, 2023
Submission Date November 20, 2022
Published in Issue Year 2023

Cite

APA Kelen, F. (2023). Nikel Partiküller ile Takviye Edilmiş Magnezyum Matrisli Kompozitlerin Üretimi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(5), 1318-1327. https://doi.org/10.35414/akufemubid.1207488
AMA Kelen F. Nikel Partiküller ile Takviye Edilmiş Magnezyum Matrisli Kompozitlerin Üretimi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2023;23(5):1318-1327. doi:10.35414/akufemubid.1207488
Chicago Kelen, Fevzi. “Nikel Partiküller Ile Takviye Edilmiş Magnezyum Matrisli Kompozitlerin Üretimi Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 5 (October 2023): 1318-27. https://doi.org/10.35414/akufemubid.1207488.
EndNote Kelen F (October 1, 2023) Nikel Partiküller ile Takviye Edilmiş Magnezyum Matrisli Kompozitlerin Üretimi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 5 1318–1327.
IEEE F. Kelen, “Nikel Partiküller ile Takviye Edilmiş Magnezyum Matrisli Kompozitlerin Üretimi ve Karakterizasyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 5, pp. 1318–1327, 2023, doi: 10.35414/akufemubid.1207488.
ISNAD Kelen, Fevzi. “Nikel Partiküller Ile Takviye Edilmiş Magnezyum Matrisli Kompozitlerin Üretimi Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/5 (October 2023), 1318-1327. https://doi.org/10.35414/akufemubid.1207488.
JAMA Kelen F. Nikel Partiküller ile Takviye Edilmiş Magnezyum Matrisli Kompozitlerin Üretimi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1318–1327.
MLA Kelen, Fevzi. “Nikel Partiküller Ile Takviye Edilmiş Magnezyum Matrisli Kompozitlerin Üretimi Ve Karakterizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 5, 2023, pp. 1318-27, doi:10.35414/akufemubid.1207488.
Vancouver Kelen F. Nikel Partiküller ile Takviye Edilmiş Magnezyum Matrisli Kompozitlerin Üretimi ve Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(5):1318-27.