Research Article
BibTex RIS Cite

Doğal Gaz Boru İçi Denetleme Robotları İçin Enerji Depolama Sistemlerinin Tasarlanması

Year 2023, , 143 - 151, 01.03.2023
https://doi.org/10.35414/akufemubid.1229788

Abstract

Boru içi denetleme teknolojisi doğal gaz dağıtım hatlarında robotik sistemler ile gerçekleştirilebilmektedir. Robotik sistemlerin tasarlanmasındaki en büyük zorluklar, patlayıcı ortamdan korunma standartlarına (ATEX) uyum ve kritik operasyon sürelerine göre enerji depolama sistemlerinin boyutlandırılmasıdır. Bu çalışmada, robotik sistemler için enerji depolama sisteminin boyutlandırma adımları paylaşılmış, literatürdeki mevcut tasarım yöntemlerinden farklı olarak, tasarım ve üretim aşamalarını kolaylaştıracak iki ayrı maliyet etkin çözüm sunulmuştur. Önerilen tasarım yaklaşımları ATEX Bölge-1 tanımlı modüllere ihtiyaç duymamakta, özellikle küçük çaplı doğal gaz boru hatlarına yönelik tasarım çalışmalarını kolaylaştıracağı değerlendirilmektedir.

References

  • Augeard, A., Singo, T. Desperez, P., Perisse, F., Menecier, S. and Abbaoui M., 2015. Arc analysis to the CID of li-ion battery cells in high-current applications. Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts, New Orleans,USA doi:10.1109/HOLM.2014.7031038.
  • Bhavani, N., Senthilkumar, G., Kunjumohamad, S. Pazhani, A. and Kumar R., 2022. Real-Time Inspection in Detection Magnetic Flux Leakage by Deep Learning Integrated with Concentrating Non-Destructive Principle and Electromagnetic Induction. IEEE Instrumentation and Measurement Magazine, 25(7), pp. 48–54. doi:10.1109/MIM.2022.9908257.
  • Chen, J., Westwood, S. and Heaney, D., 2020. A Feature-Specific Probabilistic Assessment of Pipeline Defect Size From ILI MFL Signal Using Convolutional Neural Network. Proceedings of the 2020 13th International Pipeline Conference. (1) .Virtual, Online. September 28–30, doi.org/10.1115/IPC2020-9331.
  • Europe, W., 2019. ATEX equipment and zones explained World Pumps, 2019(3), pp. 22–23. doi:10.1016/s0262-1762(19)30034-3.
  • Feng, Q., Li R., Nie B., Liu, S., Zhao L. and Zhang H., 2017. Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection, Sensors, 17(1) doi.org/10.3390/s17010050
  • Fenre, M.D. and Klein-Paste, A., 2021. Bicycle rolling resistance under winter conditions, Cold Regions Science and Technology, 187, p. 103282. doi:10.1016/j.coldregions.2021.103282.
  • Jang, H., Kim T., Lee C., Kim J., Lee H. and Choi H., 2021. Journal of Pipeline Science and Engineering Risk-based pipeline integrity management : A road map for the resilient pipelines, Journal of Pipeline Science and Engineering, 1(1), pp. 74–87. doi:10.1016/j.jpse.2021.02.001.
  • Kim, D., Yoo, H., Cho, S., Koo, S. Kim, D., Yoo, J. and Rho, Y., 2017. Inspection of Unpiggable Natural Gas Pipelines Using In-Pipe Robot, AETA 2016: Recent Advances in Electrical Engineering and Related Sciences, Springer International Publishing, 415 pp. 364–373.
  • Mirshamsi, M. and Rafeeyan, M. 2019. Speed control of inspection pig in gas pipelines using sliding mode control, Journal of Process Control, 77, pp. 134–140. doi:10.1016/j.jprocont.2019.03.001.
  • Piao, G., Guo, J., Hu, T., Deng, Y. and Leung, H., 2019. A novel pulsed eddy current method for high-speed pipeline inline inspection, Sensors and Actuators, 295, pp. 244–258. doi:10.1016/j.sna.2019.05.026.
  • Sheikh, T., Sampath, S. and Bhattacharya, B., 2022. Sensors and Actuators : A . Physical Bimorph sensor based in-line inspection method for corrosion defect detection in natural gas pipelines, Sensors and Actuators: A. Physical, 347, p. 113940. doi:10.1016/j.sna.2022.113940.
  • Sylvestrin, G.R., Scherer, H.F. and Hideo Ando Junior, O., 2021. Hardware and Software Development of an Open Source Battery Management System, IEEE Latin America Transactions, 19(7), pp. 1153–1163. doi:10.1109/TLA.2021.9461844.
  • Tetik, Y.E. Yavasoglu H. A., Gokce, K. ve diğ., 2019. BİDR : Boru İçi Denetleme Robotu, Türkiye Robotbilim Konferansı, Istanbul, Türkiye.
  • Verma, A., Kaiwart, A., Dubey, D. N., Naseer, F. and Pradhan S., 2022. A review on various types of in-pipe inspection robot, Materials Today: Proceedings, 50, pp. 1425–1434. doi:10.1016/j.matpr.2021.08.335.
  • Wolbeck, S. and Beuker, T., 2011. ATEX-Compliant In-Line Inspection Services, 6 th Pipeline Technology Conference, pp. 1–7, Berlin, Germany.
  • Yang, Y., Gao, B., Liu, D., Ma, Q., Li, H. and Woo H., 2022. Electromagnetic Pigging System Based on Sandwich Differential Planar Coil, IEEE Sensors Journal, (22)19, pp. 18903-18913, 2022, doi: 10.1109/JSEN.2022.3201093.
  • Yavasoglu H. A., Ünal İ., Koksoy A., Tetik Y. E., G.K., 2022. Long Range Wireless Communication for Natural Gas Pipeline Inspection Robot. 3rd SDEWES LA Conference Sao paulo.
  • Yavasoglu, H. A., Shen, J., Shi, C., Gokasan, M. and Khaligh, A., 2015. Power Split Control Strategy for an EV Powertrain With Two Propulsion Machines, IEEE Transactions on Transportation Electrification, 1(4), pp. 382–390. doi:10.1109/TTE.2015.2504406.
  • Yavasoglu, H. A., Shi, C. and Gokce, K., 2017 Energy storage systems for EVs with two propulsion machines, IEEE Transportation and Electrification Conference and Expo, Chicago, USA, pp. 696–700. doi:10.1109/ITEC.2017.7993354.

Energy Storage Systems for Natural Gas Pipeline In-line Inspection Robots

Year 2023, , 143 - 151, 01.03.2023
https://doi.org/10.35414/akufemubid.1229788

Abstract

In natural gas distribution lines, robotic systems can be utilized to implement technology for in-line inspection. Compliance with explosive atmosphere protection standards (ATEX) and sizing energy storage systems for critical operating times are the greatest obstacles when designing robotic systems. In this study, the steps for sizing the energy storage system for robotic systems are outlined, and two cost-effective solutions, distinct from the existing design methods in the literature, are presented to facilitate the design and production phases.The proposed design approaches do not necessitate ATEX Zone-1 defined modules and are believed to facilitate design studies, particularly for natural gas pipelines with small diameters.

References

  • Augeard, A., Singo, T. Desperez, P., Perisse, F., Menecier, S. and Abbaoui M., 2015. Arc analysis to the CID of li-ion battery cells in high-current applications. Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts, New Orleans,USA doi:10.1109/HOLM.2014.7031038.
  • Bhavani, N., Senthilkumar, G., Kunjumohamad, S. Pazhani, A. and Kumar R., 2022. Real-Time Inspection in Detection Magnetic Flux Leakage by Deep Learning Integrated with Concentrating Non-Destructive Principle and Electromagnetic Induction. IEEE Instrumentation and Measurement Magazine, 25(7), pp. 48–54. doi:10.1109/MIM.2022.9908257.
  • Chen, J., Westwood, S. and Heaney, D., 2020. A Feature-Specific Probabilistic Assessment of Pipeline Defect Size From ILI MFL Signal Using Convolutional Neural Network. Proceedings of the 2020 13th International Pipeline Conference. (1) .Virtual, Online. September 28–30, doi.org/10.1115/IPC2020-9331.
  • Europe, W., 2019. ATEX equipment and zones explained World Pumps, 2019(3), pp. 22–23. doi:10.1016/s0262-1762(19)30034-3.
  • Feng, Q., Li R., Nie B., Liu, S., Zhao L. and Zhang H., 2017. Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection, Sensors, 17(1) doi.org/10.3390/s17010050
  • Fenre, M.D. and Klein-Paste, A., 2021. Bicycle rolling resistance under winter conditions, Cold Regions Science and Technology, 187, p. 103282. doi:10.1016/j.coldregions.2021.103282.
  • Jang, H., Kim T., Lee C., Kim J., Lee H. and Choi H., 2021. Journal of Pipeline Science and Engineering Risk-based pipeline integrity management : A road map for the resilient pipelines, Journal of Pipeline Science and Engineering, 1(1), pp. 74–87. doi:10.1016/j.jpse.2021.02.001.
  • Kim, D., Yoo, H., Cho, S., Koo, S. Kim, D., Yoo, J. and Rho, Y., 2017. Inspection of Unpiggable Natural Gas Pipelines Using In-Pipe Robot, AETA 2016: Recent Advances in Electrical Engineering and Related Sciences, Springer International Publishing, 415 pp. 364–373.
  • Mirshamsi, M. and Rafeeyan, M. 2019. Speed control of inspection pig in gas pipelines using sliding mode control, Journal of Process Control, 77, pp. 134–140. doi:10.1016/j.jprocont.2019.03.001.
  • Piao, G., Guo, J., Hu, T., Deng, Y. and Leung, H., 2019. A novel pulsed eddy current method for high-speed pipeline inline inspection, Sensors and Actuators, 295, pp. 244–258. doi:10.1016/j.sna.2019.05.026.
  • Sheikh, T., Sampath, S. and Bhattacharya, B., 2022. Sensors and Actuators : A . Physical Bimorph sensor based in-line inspection method for corrosion defect detection in natural gas pipelines, Sensors and Actuators: A. Physical, 347, p. 113940. doi:10.1016/j.sna.2022.113940.
  • Sylvestrin, G.R., Scherer, H.F. and Hideo Ando Junior, O., 2021. Hardware and Software Development of an Open Source Battery Management System, IEEE Latin America Transactions, 19(7), pp. 1153–1163. doi:10.1109/TLA.2021.9461844.
  • Tetik, Y.E. Yavasoglu H. A., Gokce, K. ve diğ., 2019. BİDR : Boru İçi Denetleme Robotu, Türkiye Robotbilim Konferansı, Istanbul, Türkiye.
  • Verma, A., Kaiwart, A., Dubey, D. N., Naseer, F. and Pradhan S., 2022. A review on various types of in-pipe inspection robot, Materials Today: Proceedings, 50, pp. 1425–1434. doi:10.1016/j.matpr.2021.08.335.
  • Wolbeck, S. and Beuker, T., 2011. ATEX-Compliant In-Line Inspection Services, 6 th Pipeline Technology Conference, pp. 1–7, Berlin, Germany.
  • Yang, Y., Gao, B., Liu, D., Ma, Q., Li, H. and Woo H., 2022. Electromagnetic Pigging System Based on Sandwich Differential Planar Coil, IEEE Sensors Journal, (22)19, pp. 18903-18913, 2022, doi: 10.1109/JSEN.2022.3201093.
  • Yavasoglu H. A., Ünal İ., Koksoy A., Tetik Y. E., G.K., 2022. Long Range Wireless Communication for Natural Gas Pipeline Inspection Robot. 3rd SDEWES LA Conference Sao paulo.
  • Yavasoglu, H. A., Shen, J., Shi, C., Gokasan, M. and Khaligh, A., 2015. Power Split Control Strategy for an EV Powertrain With Two Propulsion Machines, IEEE Transactions on Transportation Electrification, 1(4), pp. 382–390. doi:10.1109/TTE.2015.2504406.
  • Yavasoglu, H. A., Shi, C. and Gokce, K., 2017 Energy storage systems for EVs with two propulsion machines, IEEE Transportation and Electrification Conference and Expo, Chicago, USA, pp. 696–700. doi:10.1109/ITEC.2017.7993354.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering, Mechanical Engineering
Journal Section Articles
Authors

Hüseyin Ayhan Yavaşoğlu 0000-0001-8145-719X

Publication Date March 1, 2023
Submission Date January 5, 2023
Published in Issue Year 2023

Cite

APA Yavaşoğlu, H. A. (2023). Doğal Gaz Boru İçi Denetleme Robotları İçin Enerji Depolama Sistemlerinin Tasarlanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(1), 143-151. https://doi.org/10.35414/akufemubid.1229788
AMA Yavaşoğlu HA. Doğal Gaz Boru İçi Denetleme Robotları İçin Enerji Depolama Sistemlerinin Tasarlanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2023;23(1):143-151. doi:10.35414/akufemubid.1229788
Chicago Yavaşoğlu, Hüseyin Ayhan. “Doğal Gaz Boru İçi Denetleme Robotları İçin Enerji Depolama Sistemlerinin Tasarlanması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 1 (March 2023): 143-51. https://doi.org/10.35414/akufemubid.1229788.
EndNote Yavaşoğlu HA (March 1, 2023) Doğal Gaz Boru İçi Denetleme Robotları İçin Enerji Depolama Sistemlerinin Tasarlanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 1 143–151.
IEEE H. A. Yavaşoğlu, “Doğal Gaz Boru İçi Denetleme Robotları İçin Enerji Depolama Sistemlerinin Tasarlanması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 1, pp. 143–151, 2023, doi: 10.35414/akufemubid.1229788.
ISNAD Yavaşoğlu, Hüseyin Ayhan. “Doğal Gaz Boru İçi Denetleme Robotları İçin Enerji Depolama Sistemlerinin Tasarlanması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/1 (March 2023), 143-151. https://doi.org/10.35414/akufemubid.1229788.
JAMA Yavaşoğlu HA. Doğal Gaz Boru İçi Denetleme Robotları İçin Enerji Depolama Sistemlerinin Tasarlanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:143–151.
MLA Yavaşoğlu, Hüseyin Ayhan. “Doğal Gaz Boru İçi Denetleme Robotları İçin Enerji Depolama Sistemlerinin Tasarlanması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 1, 2023, pp. 143-51, doi:10.35414/akufemubid.1229788.
Vancouver Yavaşoğlu HA. Doğal Gaz Boru İçi Denetleme Robotları İçin Enerji Depolama Sistemlerinin Tasarlanması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(1):143-51.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.