Research Article
BibTex RIS Cite

PPy/SbOx-SnO2 Anot Aktif Malzemesinin Tek Basamakta Elektrokimyasal Sentezi ve Süperkapasitör Uygulaması

Year 2023, , 898 - 913, 31.08.2023
https://doi.org/10.35414/akufemubid.1240402

Abstract

Bu çalışmada süperkapasitör anodu için pirol (Py), Sb(BF4)3 ve Sn(BF4)2 içeren TBABF4/asetonitril çözeltisinde (sentez çözeltisi) PPy, nano-SbOx ve nano-SnO2’nin eş zamanlı elektrokimyasal sentezi ile PPy/SbOx-SnO2 kompozit kaplı grafit elektrot hazırlandı. Çok döngülü dönüşümlü voltametri ile kalem ucu grafit elektrot yüzeyine sentezlenen kompozitin ve karşılaştırmak için PPy homopolimerinin elektrokimyasal özellikleri sulu 100 mM H2SO4 çözeltisinde CV, GCD ve EIS yöntemleri ile incelendi. 5 A g-1’de PPy/SbOx-SnO2 kompozit kaplı elektrodun spesifik kapasitansı 363,1 F g-1 iken PPy kaplı elektrodunki 304,7 F g-1’dır. FESEM, EDX, XRD ve XPS teknikleri kullanılarak grafit plaka yüzeyine sentezlenmiş PPy/SbOx-SnO2 kompozitinin karakterizasyonu gerçekleştirildi. Asimetrik süperkapasitör hücresi, anot aktif malzeme olarak grafit kağıt yüzeyinde PPy/SbOx-SnO2/CMC kompozit kaplama ve katot aktif malzeme olarak grafit kağıt yüzeyinde aktif karbon esaslı kaplama kullanılarak polivinil alkol (PVA)/H2SO4 jel elektroliti içinde hazırlandı. Burada mekanik dayanımını arttırmak için PPy/SbOx-SnO2 kompoziti CMC (karbosimetil selüloz) varlığında sentezlendi. Hücre, 2,5 A g-1’de 15,3 Wh kg-1 enerji yoğunluğu ve 1,77 kW kg-1 güç yoğunluğu sergiledi.

Supporting Institution

Hacettepe Üniversitesi

Project Number

FYL-2022-19924

Thanks

Bu çalışma, FYL-2022-19924 koduyla Hacettepe Üniversitesi BAP birimi tarafından desteklenmiştir.

References

  • Abdah, M. A. A. M., Azman, N. H. N., Kulandaivalu, S. and Sulaiman, Y., 2020. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Materials & Design, 186, 108199.
  • Allen, J. P., Carey, J. J., Walsh, A., Scanlon, D. O. and Watson, G. W., 2013. Electronic structures of antimony oxides. The Journal of Physical Chemistry C, 117(28), 14759-14769.
  • An, C., Zhang, Y., Guo, H. and Wang, Y., 2019. Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances, 1(12), 4644-4658.
  • Aydın, Y., Gürü, M. and Akkurt, M., 2021. Investigation Of Synthesis Parameters Of Antimony Fluoroborate And Its Usability As A Flame Retardant For Cellulosic Fabrics. Cellulose Chem. Technol, 55(7-8), 893-900.
  • Çekiç, M. G., Karaca, E. and Pekmez, N. Ö., 2023. A facile one-step electrosynthesis of polypyrrole/nano-SbOx composite for supercapacitors. Synthetic Metals, 293.
  • Delfani, E., Khodabakhshi, A., Habibzadeh, S., Naji, L. and Ganjali, M. R., 2022. Novel mesoporous Co 3 O 4–Sb 2 O 3–SnO 2 active material in high-performance capacitive deionization. RSC advances, 12(2), 907-920.
  • Deng, H., Huang, J., Hu, Z., Chen, X., Huang, D. and Jin, T., 2021. Fabrication of a three-dimensionally networked MoO3/PPy/rGO composite for a high-performance symmetric supercapacitor. ACS omega, 6(14), 9426-9432.
  • Du, Y., Zhang, Y., Li, L., Wang, N. and Chai, Y., 2021. Nano SnO2 and Sb2O3 combined with CNTs as a high-capacity lithium storage material. Applied Surface Science, 543, 148870.
  • El Nady, J., Shokry, A., Khalil, M., Ebrahim, S., Elshaer, A. and Anas, M., 2022. One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Scientific Reports, 12(1), 1-10.
  • Golkhatmi, S. Z., Sedghi, A., Miankushki, H. N. and Khalaj, M., 2021. Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes. Energy, 214, 118950.
  • González–Fuentes, M. A., Bruno–Mota, U., Méndez–Albores, A., Teutli–Leon, M., Medel, A., Agustín, R., Feria, R., Hernández, A. A. and Méndez, E., 2021. Synthesis and Characterization of Uncracked IrO2‒SnO2‒Sb2O3 Oxide Films Using Organic Precursors and Their Application for the Oxidation of Tartrazine and Dibenzothiophene. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 16(3).
  • Hamidouche, F., Sanad, M. M., Ghebache, Z. and Boudieb, N., 2022. Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications. Journal of Molecular Structure, 1251, 131964.
  • Hong, K.-S., Nam, D.-H., Lim, S.-J. and Kwon, H., 2014. Enhanced Electrochemical Performance of Sb and Sb2O3 Composite By Electrodeposition for Na-Ion Batteries. ECS Meeting Abstracts. (2): p. 257.
  • Hong, K.-S., Nam, D.-H., Lim, S.-J., Sohn, D., Kim, T.-H. and Kwon, H., 2015. Electrochemically synthesized Sb/Sb2O3 composites as high-capacity anode materials utilizing a reversible conversion reaction for Na-ion batteries. ACS applied materials & interfaces, 7(31), 17264-17271.
  • Jin, Y. and Jia, M., 2015. Design and synthesis of nanostructured graphene-SnO2-polyaniline ternary composite and their excellent supercapacitor performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 464, 17-25.
  • Kalubarme, R. S., Park, C. J., Kale, B. B. and Gosavi, S. W., 2021. Highly crystalline antimony oxide octahedron: an efficient anode for sodium-ion batteries. Journal of Materials Science: Materials in Electronics, 32, 3809 - 3818.
  • Kandasamy, M., Seetharaman, A., Chakraborty, B., Babu, I. M., William, J. J., Muralidharan, G., Jothivenkatachalam, K. and Sivasubramanian, D., 2020. Experimental and Theoretical Investigation of the Energy-Storage Behavior of a Polyaniline-Linked Reduced-Graphene-Oxide–Sn O 2 Ternary Nanohybrid Electrode. Physical Review Applied, 14(2), 024067.
  • Karaca, E., Gökcen, D., Pekmez, N. Ö. and Pekmez, K., 2019. Electrochemical synthesis of PPy composites with nanostructured MnOx, CoOx, NiOx, and FeOx in acetonitrile for supercapacitor applications. Electrochimica Acta, 305, 502-513.
  • Karaca, E., Gökcen, D., Pekmez, N. Ö. and Pekmez, K., 2019. Galvanostatic synthesis of nanostructured Ag‐Ag2O dispersed PPy composite on graphite electrode for supercapacitor applications. International Journal of Energy Research, 44(1), 158-170.
  • Karaca, E., Gökcen, D., Pekmez, N. Ö. and Pekmez, K., 2019. One-step electrosynthesis of polypyrrole/PbOx composite in acetonitrile as supercapacitor electrode material. Synthetic Metals, 247, 255-267.
  • Karaca, E., Pekmez, K. and Pekmez, N. O., 2018. Electrosynthesis of polypyrrole-vanadium oxide composites on graphite electrode in acetonitrile in the presence of carboxymethyl cellulose for electrochemical supercapacitors. Electrochimica Acta, 273, 379-391.
  • Kim, S., Qu, S., Zhang, R. and Braun, P. V., 2019. High volumetric and gravimetric capacity electrodeposited mesostructured Sb2O3 sodium ion battery anodes. Small, 15(23), 1900258.
  • Luo, Z., Zhu, Y., Liu, E., Hu, T., Li, Z., Liu, T. and Song, L., 2014. Synthesis of polyaniline/SnO2 nanocomposite and its improved electrochemical performance. Materials Research Bulletin, 60, 105-110.
  • Meng, Q., Cai, K., Chen, Y. and Chen, L., 2017. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 36, 268-285.
  • Nam, D. H., Hong, K. S., Lim, S. J., Kim, M. J. and Kwon, H. S., 2015. High‐performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na‐ion batteries. small, 11(24), 2885-2892.
  • Naseeb, I., Almashhadani, H. A., Macadangdang Jr, R. R., Ullah, S., Khan, M. F., Kamran, M., Qureshi, N. and Naseeb, F., 2022. Interfacial polymerization synthesis of polypyrrole and sodium metavanadate (PPy/NaVO3) composite as an excellent performance electrode for supercapacitors. Results in Chemistry, 4, 100446.
  • Pourfarzad, H., Badrnezhad, R., Ghaemmaghami, M. and Saremi, M., 2021. In situ synthesis of C3N4/PPy/MnO2 nanocomposite as a high performance active material for asymmetric supercapacitor. Ionics, 27(9), 4057-4067.
  • Shen, Z.-M., Luo, X.-J., Zhu, Y.-Y. and Liu, Y.-S., 2022. Facile co-deposition of NiO-CoO-PPy composite for asymmetric supercapacitors. Journal of Energy Storage, 51, 104475.
  • Simon, P., Gogotsi, Y. and Dunn, B., 2014. Where do batteries end and supercapacitors begin? Science, 343(6176), 1210-1211.
  • SuongáOu, F., 2008. Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chemical Communications, (20), 2373-2375.
  • Van Dyke, L. S. and Martin, C. R., 1990. Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced. Langmuir, 6(6), 1118-1123.
  • Vicent, F., Morallon, E., Quijada, C., Vazquez, J. L., Aldaz, A. and Cases, F., 1998. Characterization and stability of doped SnO2 anodes. Journal of Applied Electrochemistry, 28(6), 607-612.
  • Wang, W., Hao, Q., Lei, W., Xia, X. and Wang, X., 2012. Graphene/SnO 2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. Rsc Advances, 2(27), 10268-10274.
  • Wang, W., Lei, W., Yao, T., Xia, X., Huang, W., Hao, Q. and Wang, X., 2013. One-pot synthesis of graphene/SnO2/PEDOT ternary electrode material for supercapacitors. Electrochimica Acta, 108, 118-126.
  • Xue, B., Wang, J.-Y., Sun, J., Yu, S.-J. and Shen, Z.-Q., 2009. Electrochemical Oxidation of Imazethapyr on Ti/SnO2-Sb2O5/PbO2 Anode for Waste Water Treatment. 2009 3rd International Conference on Bioinformatics and Biomedical Engineering. p. 1-4.
  • Xue, J., Yang, Q., Guan, R., Shen, Q., Liu, X., Jia, H. and Li, Q., 2020. High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors. Materials Chemistry and Physics, 256, 123591.
  • Zhang, G., Cao, W., Zhang, H., Hou, Y. and Guo, J., 2022. Facial Synthesis of Fe3O4/PPy Core–Shell Composite Electrode Material for Boosted Supercapacity. Energy & Fuels, 36(9), 5018-5026.
  • Zhang, G., Qu, Y., Zhao, F., Dang, R., Yang, J., Wang, L., Zhang, Y. and Duan, L., 2021. Carbon-Interlayer SnO2–Sb2O3 Composite Core–Shell Structure Anodes for Sodium-Ion Batteries. Frontiers in Energy Research, 8, 606237.
  • Zhang, L., Song, Y., Hu, Y., Ruan, H., Bai, J., Li, S., Liu, Y. and Guo, S., 2022. Flexible Sb/Sb2O3-C nanofibers as binder-free anodes for high-performance and stable sodium-ion batteries. Journal of Alloys and Compounds, 890, 161913.
  • Zhao, C., Jia, X., Shu, K., Yu, C., Wallace, G. G. and Wang, C., 2020. Conducting polymer composites for unconventional solid-state supercapacitors. Journal of Materials Chemistry A, 8(9), 4677-4699.
  • Zhao, D., Zhang, Q., Chen, W., Yi, X., Liu, S., Wang, Q., Liu, Y., Li, J., Li, X. and Yu, H., 2017. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes. ACS Appl Mater Interfaces, 9(15), 13213-13222.
  • Zhou, X.-z., Lu, H.-j., Tang, X.-c., Zeng, Y.-p. and Yu, X., 2019. Facile synthesis of Sb@ Sb2O3/reduced graphene oxide composite with superior lithium-storage performance. Journal of Central South University, 26(6), 1493-1502.

One-step Electrochemical Synthesis of PPy/SbOx-SnO2 Anode Active Material and Supercapacitor Application

Year 2023, , 898 - 913, 31.08.2023
https://doi.org/10.35414/akufemubid.1240402

Abstract

In this study, PPy/SbOx-SnO2 composite-coated graphite electrode was prepared for the supercapacitor anode by simultaneous electrochemical synthesis of PPy, nano-SbOx, and nano-SnO2 in TBABF4/acetonitrile solution containing pyrrole (Py), Sb(BF4)3, and Sn(BF4)2. The electrochemical properties of the composite, which was synthesized by multi-scan cyclic voltammetry on the pencil graphite electrode surface, were investigated in aqueous 100 mM H2SO4 solution using CV, GCD, and EIS methods by comparing them with that of the PPy homopolymer prepared in the same way. The specific capacitance of the PPy/SbOx-SnO2 composite-coated electrode was 363.1 F g-1 at 5 A g-1, while that of the PPy-coated electrode was 304.7 F g-1. The composite synthesized on the graphite plate surface was characterized using FESEM, EDX, XRD, and XPS techniques. The asymmetric supercapacitor cell was prepared in polyvinyl alcohol (PVA)/H2SO4 gel electrolyte using the PPy/SbOx-SnO2/CMC composite coating on the graphite paper surface as the active anode material and the activated carbon-based coating on the graphite paper surface as the active cathode material. Here, the PPy/SbOx-SnO2 composite was synthesized in the presence of CMC (carboxymethyl cellulose in order to increase its mechanical strength. The cell exhibited an energy density of 15.3 Wh kg-1 and a power density of 1.77 kW kg-1 at 2.5 A g-1.

Project Number

FYL-2022-19924

References

  • Abdah, M. A. A. M., Azman, N. H. N., Kulandaivalu, S. and Sulaiman, Y., 2020. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Materials & Design, 186, 108199.
  • Allen, J. P., Carey, J. J., Walsh, A., Scanlon, D. O. and Watson, G. W., 2013. Electronic structures of antimony oxides. The Journal of Physical Chemistry C, 117(28), 14759-14769.
  • An, C., Zhang, Y., Guo, H. and Wang, Y., 2019. Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances, 1(12), 4644-4658.
  • Aydın, Y., Gürü, M. and Akkurt, M., 2021. Investigation Of Synthesis Parameters Of Antimony Fluoroborate And Its Usability As A Flame Retardant For Cellulosic Fabrics. Cellulose Chem. Technol, 55(7-8), 893-900.
  • Çekiç, M. G., Karaca, E. and Pekmez, N. Ö., 2023. A facile one-step electrosynthesis of polypyrrole/nano-SbOx composite for supercapacitors. Synthetic Metals, 293.
  • Delfani, E., Khodabakhshi, A., Habibzadeh, S., Naji, L. and Ganjali, M. R., 2022. Novel mesoporous Co 3 O 4–Sb 2 O 3–SnO 2 active material in high-performance capacitive deionization. RSC advances, 12(2), 907-920.
  • Deng, H., Huang, J., Hu, Z., Chen, X., Huang, D. and Jin, T., 2021. Fabrication of a three-dimensionally networked MoO3/PPy/rGO composite for a high-performance symmetric supercapacitor. ACS omega, 6(14), 9426-9432.
  • Du, Y., Zhang, Y., Li, L., Wang, N. and Chai, Y., 2021. Nano SnO2 and Sb2O3 combined with CNTs as a high-capacity lithium storage material. Applied Surface Science, 543, 148870.
  • El Nady, J., Shokry, A., Khalil, M., Ebrahim, S., Elshaer, A. and Anas, M., 2022. One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Scientific Reports, 12(1), 1-10.
  • Golkhatmi, S. Z., Sedghi, A., Miankushki, H. N. and Khalaj, M., 2021. Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes. Energy, 214, 118950.
  • González–Fuentes, M. A., Bruno–Mota, U., Méndez–Albores, A., Teutli–Leon, M., Medel, A., Agustín, R., Feria, R., Hernández, A. A. and Méndez, E., 2021. Synthesis and Characterization of Uncracked IrO2‒SnO2‒Sb2O3 Oxide Films Using Organic Precursors and Their Application for the Oxidation of Tartrazine and Dibenzothiophene. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 16(3).
  • Hamidouche, F., Sanad, M. M., Ghebache, Z. and Boudieb, N., 2022. Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications. Journal of Molecular Structure, 1251, 131964.
  • Hong, K.-S., Nam, D.-H., Lim, S.-J. and Kwon, H., 2014. Enhanced Electrochemical Performance of Sb and Sb2O3 Composite By Electrodeposition for Na-Ion Batteries. ECS Meeting Abstracts. (2): p. 257.
  • Hong, K.-S., Nam, D.-H., Lim, S.-J., Sohn, D., Kim, T.-H. and Kwon, H., 2015. Electrochemically synthesized Sb/Sb2O3 composites as high-capacity anode materials utilizing a reversible conversion reaction for Na-ion batteries. ACS applied materials & interfaces, 7(31), 17264-17271.
  • Jin, Y. and Jia, M., 2015. Design and synthesis of nanostructured graphene-SnO2-polyaniline ternary composite and their excellent supercapacitor performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 464, 17-25.
  • Kalubarme, R. S., Park, C. J., Kale, B. B. and Gosavi, S. W., 2021. Highly crystalline antimony oxide octahedron: an efficient anode for sodium-ion batteries. Journal of Materials Science: Materials in Electronics, 32, 3809 - 3818.
  • Kandasamy, M., Seetharaman, A., Chakraborty, B., Babu, I. M., William, J. J., Muralidharan, G., Jothivenkatachalam, K. and Sivasubramanian, D., 2020. Experimental and Theoretical Investigation of the Energy-Storage Behavior of a Polyaniline-Linked Reduced-Graphene-Oxide–Sn O 2 Ternary Nanohybrid Electrode. Physical Review Applied, 14(2), 024067.
  • Karaca, E., Gökcen, D., Pekmez, N. Ö. and Pekmez, K., 2019. Electrochemical synthesis of PPy composites with nanostructured MnOx, CoOx, NiOx, and FeOx in acetonitrile for supercapacitor applications. Electrochimica Acta, 305, 502-513.
  • Karaca, E., Gökcen, D., Pekmez, N. Ö. and Pekmez, K., 2019. Galvanostatic synthesis of nanostructured Ag‐Ag2O dispersed PPy composite on graphite electrode for supercapacitor applications. International Journal of Energy Research, 44(1), 158-170.
  • Karaca, E., Gökcen, D., Pekmez, N. Ö. and Pekmez, K., 2019. One-step electrosynthesis of polypyrrole/PbOx composite in acetonitrile as supercapacitor electrode material. Synthetic Metals, 247, 255-267.
  • Karaca, E., Pekmez, K. and Pekmez, N. O., 2018. Electrosynthesis of polypyrrole-vanadium oxide composites on graphite electrode in acetonitrile in the presence of carboxymethyl cellulose for electrochemical supercapacitors. Electrochimica Acta, 273, 379-391.
  • Kim, S., Qu, S., Zhang, R. and Braun, P. V., 2019. High volumetric and gravimetric capacity electrodeposited mesostructured Sb2O3 sodium ion battery anodes. Small, 15(23), 1900258.
  • Luo, Z., Zhu, Y., Liu, E., Hu, T., Li, Z., Liu, T. and Song, L., 2014. Synthesis of polyaniline/SnO2 nanocomposite and its improved electrochemical performance. Materials Research Bulletin, 60, 105-110.
  • Meng, Q., Cai, K., Chen, Y. and Chen, L., 2017. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 36, 268-285.
  • Nam, D. H., Hong, K. S., Lim, S. J., Kim, M. J. and Kwon, H. S., 2015. High‐performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na‐ion batteries. small, 11(24), 2885-2892.
  • Naseeb, I., Almashhadani, H. A., Macadangdang Jr, R. R., Ullah, S., Khan, M. F., Kamran, M., Qureshi, N. and Naseeb, F., 2022. Interfacial polymerization synthesis of polypyrrole and sodium metavanadate (PPy/NaVO3) composite as an excellent performance electrode for supercapacitors. Results in Chemistry, 4, 100446.
  • Pourfarzad, H., Badrnezhad, R., Ghaemmaghami, M. and Saremi, M., 2021. In situ synthesis of C3N4/PPy/MnO2 nanocomposite as a high performance active material for asymmetric supercapacitor. Ionics, 27(9), 4057-4067.
  • Shen, Z.-M., Luo, X.-J., Zhu, Y.-Y. and Liu, Y.-S., 2022. Facile co-deposition of NiO-CoO-PPy composite for asymmetric supercapacitors. Journal of Energy Storage, 51, 104475.
  • Simon, P., Gogotsi, Y. and Dunn, B., 2014. Where do batteries end and supercapacitors begin? Science, 343(6176), 1210-1211.
  • SuongáOu, F., 2008. Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chemical Communications, (20), 2373-2375.
  • Van Dyke, L. S. and Martin, C. R., 1990. Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced. Langmuir, 6(6), 1118-1123.
  • Vicent, F., Morallon, E., Quijada, C., Vazquez, J. L., Aldaz, A. and Cases, F., 1998. Characterization and stability of doped SnO2 anodes. Journal of Applied Electrochemistry, 28(6), 607-612.
  • Wang, W., Hao, Q., Lei, W., Xia, X. and Wang, X., 2012. Graphene/SnO 2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. Rsc Advances, 2(27), 10268-10274.
  • Wang, W., Lei, W., Yao, T., Xia, X., Huang, W., Hao, Q. and Wang, X., 2013. One-pot synthesis of graphene/SnO2/PEDOT ternary electrode material for supercapacitors. Electrochimica Acta, 108, 118-126.
  • Xue, B., Wang, J.-Y., Sun, J., Yu, S.-J. and Shen, Z.-Q., 2009. Electrochemical Oxidation of Imazethapyr on Ti/SnO2-Sb2O5/PbO2 Anode for Waste Water Treatment. 2009 3rd International Conference on Bioinformatics and Biomedical Engineering. p. 1-4.
  • Xue, J., Yang, Q., Guan, R., Shen, Q., Liu, X., Jia, H. and Li, Q., 2020. High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors. Materials Chemistry and Physics, 256, 123591.
  • Zhang, G., Cao, W., Zhang, H., Hou, Y. and Guo, J., 2022. Facial Synthesis of Fe3O4/PPy Core–Shell Composite Electrode Material for Boosted Supercapacity. Energy & Fuels, 36(9), 5018-5026.
  • Zhang, G., Qu, Y., Zhao, F., Dang, R., Yang, J., Wang, L., Zhang, Y. and Duan, L., 2021. Carbon-Interlayer SnO2–Sb2O3 Composite Core–Shell Structure Anodes for Sodium-Ion Batteries. Frontiers in Energy Research, 8, 606237.
  • Zhang, L., Song, Y., Hu, Y., Ruan, H., Bai, J., Li, S., Liu, Y. and Guo, S., 2022. Flexible Sb/Sb2O3-C nanofibers as binder-free anodes for high-performance and stable sodium-ion batteries. Journal of Alloys and Compounds, 890, 161913.
  • Zhao, C., Jia, X., Shu, K., Yu, C., Wallace, G. G. and Wang, C., 2020. Conducting polymer composites for unconventional solid-state supercapacitors. Journal of Materials Chemistry A, 8(9), 4677-4699.
  • Zhao, D., Zhang, Q., Chen, W., Yi, X., Liu, S., Wang, Q., Liu, Y., Li, J., Li, X. and Yu, H., 2017. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes. ACS Appl Mater Interfaces, 9(15), 13213-13222.
  • Zhou, X.-z., Lu, H.-j., Tang, X.-c., Zeng, Y.-p. and Yu, X., 2019. Facile synthesis of Sb@ Sb2O3/reduced graphene oxide composite with superior lithium-storage performance. Journal of Central South University, 26(6), 1493-1502.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Electrochemistry
Journal Section Articles
Authors

Meliha Gözde Çekiç 0000-0003-3439-3212

Erhan Karaca 0000-0002-9100-8870

Nuran Özçiçek Pekmez 0000-0002-7223-790X

Project Number FYL-2022-19924
Early Pub Date August 29, 2023
Publication Date August 31, 2023
Submission Date January 22, 2023
Published in Issue Year 2023

Cite

APA Çekiç, M. G., Karaca, E., & Özçiçek Pekmez, N. (2023). PPy/SbOx-SnO2 Anot Aktif Malzemesinin Tek Basamakta Elektrokimyasal Sentezi ve Süperkapasitör Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(4), 898-913. https://doi.org/10.35414/akufemubid.1240402
AMA Çekiç MG, Karaca E, Özçiçek Pekmez N. PPy/SbOx-SnO2 Anot Aktif Malzemesinin Tek Basamakta Elektrokimyasal Sentezi ve Süperkapasitör Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2023;23(4):898-913. doi:10.35414/akufemubid.1240402
Chicago Çekiç, Meliha Gözde, Erhan Karaca, and Nuran Özçiçek Pekmez. “PPy/SbOx-SnO2 Anot Aktif Malzemesinin Tek Basamakta Elektrokimyasal Sentezi Ve Süperkapasitör Uygulaması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 4 (August 2023): 898-913. https://doi.org/10.35414/akufemubid.1240402.
EndNote Çekiç MG, Karaca E, Özçiçek Pekmez N (August 1, 2023) PPy/SbOx-SnO2 Anot Aktif Malzemesinin Tek Basamakta Elektrokimyasal Sentezi ve Süperkapasitör Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 4 898–913.
IEEE M. G. Çekiç, E. Karaca, and N. Özçiçek Pekmez, “PPy/SbOx-SnO2 Anot Aktif Malzemesinin Tek Basamakta Elektrokimyasal Sentezi ve Süperkapasitör Uygulaması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 4, pp. 898–913, 2023, doi: 10.35414/akufemubid.1240402.
ISNAD Çekiç, Meliha Gözde et al. “PPy/SbOx-SnO2 Anot Aktif Malzemesinin Tek Basamakta Elektrokimyasal Sentezi Ve Süperkapasitör Uygulaması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/4 (August 2023), 898-913. https://doi.org/10.35414/akufemubid.1240402.
JAMA Çekiç MG, Karaca E, Özçiçek Pekmez N. PPy/SbOx-SnO2 Anot Aktif Malzemesinin Tek Basamakta Elektrokimyasal Sentezi ve Süperkapasitör Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:898–913.
MLA Çekiç, Meliha Gözde et al. “PPy/SbOx-SnO2 Anot Aktif Malzemesinin Tek Basamakta Elektrokimyasal Sentezi Ve Süperkapasitör Uygulaması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 4, 2023, pp. 898-13, doi:10.35414/akufemubid.1240402.
Vancouver Çekiç MG, Karaca E, Özçiçek Pekmez N. PPy/SbOx-SnO2 Anot Aktif Malzemesinin Tek Basamakta Elektrokimyasal Sentezi ve Süperkapasitör Uygulaması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(4):898-913.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.