Research Article
BibTex RIS Cite

Investigation of Structural, Mechanical and Thermodynamic Properties of Cubic HfZnO3 Compound by Ab Initio Method

Year 2023, , 858 - 864, 31.08.2023
https://doi.org/10.35414/akufemubid.1263710

Abstract

The lattice parameter was estimated as 3.78 Å by the structural optimization of the cubic Pm-3m space group (no:221) HfZnO3 compound with the open-source Quantum Espresso (QE) code. This calculated value is in perfect agreement with the previous theoretical work. The elastic constants calculated at ambient pressure are C11(304,8), C12(134,3) and C44(19,1) GPa. Mechanical and thermodynamic properties such as elastic modulus, anisotropy, hardness, melting temperature, Debye temperature from the calculated elastic constants were investigated. As a result of the calculations, it was seen that the HfZnO3 compound was mechanically stable, soft, and ductile. Vibration energy, free energy, entropy, and specific heat capacity were evaluated at 0-800 K temperature with the Quasi-harmonic model.

References

  • Arikan, N., Dikici Yildiz, G., Yildiz, Y. G., İyigör, A., 2020. Electronic, Elastic, Vibrational and Thermodynamic Properties of HfIrX (X = As, Sb and Bi) Compounds: Insights from DFT-Based Computer Simulation. Journal of Electronic Materials, 49, 3052–3062. https://doi.org/10.1007/s11664-020-08029-6
  • Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O., 2001. First-principles elastic constants and electronic structure of α−Pt2 Si and PtSi. Physical Review B, 63, 134112. https://doi.org/10.1103/PhysRevB.63.134112
  • Erkişi, A., Gökoğlu, G., Sürücü, G., Ellialtıoğlu, R., Yıldırım, E. K., 2016. First-principles investigation of LaGaO 3 and LaInO 3 lanthanum perovskite oxides. Philosophical Magazine, 96, 2040–2058. https://doi.org/10.1080/14786435.2016.1189100
  • Fine, M. E., Brown, L. D., Marcus, H. L., 1984. Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18, 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Fischer, T. H., Almlöf, J., 1992. General methods for geometry and wave function optimization. The Journal of Physical Chemistry, 96, 9768–9774. https://doi.org/10.1021/j100203a036
  • Gaillac, R., Pullumbi, P., Coudert, F.-X., 2016. ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28, 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., … Wentzcovitch, R. M., 2009. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21. https://doi.org/10.1088/0953-8984/21/39/395502
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K. A., 2013. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002. https://doi.org/10.1063/1.4812323
  • Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Rühl, S., Wolverton, C., 2015. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Computational Materials, 1, 15010. https://doi.org/10.1038/npjcompumats.2015.10
  • Koriba, I., Lagoun, B., Cheriet, A., Guibadj, A., Belhadj, S., Ameur, A., Aissani, L., Alhussein, A., 2022. Phase stability, mechanical and optoelectronic properties of lanthanum chromite-based perovskite oxide. Applied Physics A, 128, 82. https://doi.org/10.1007/s00339-021-05150-z
  • Methfessel, M., Paxton, A. T., 1989. High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40, 3616. https://doi.org/10.1103/PhysRevB.40.3616
  • Özer, T., 2018. Determination of melting temperature (H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, B. Direkci (ed.); ss. 87–99). 4 th International Congress on Multidisciplinary Studies.
  • Özer, T., 2019. Study of first principles on anisotropy and elastic constants of Y3Al2 compound. Chinese Journal of Physics, 61, 180–189. https://doi.org/10.1016/j.cjph.2019.08.011
  • Özer, T., 2020. Study of first principles on anisotropy and elastic constants of YAl3 compound. Canadian Journal of Physics, 98(4), 357–363. https://doi.org/10.1139/cjp-2018-0448
  • Özer, T., 2021. Investigation of pressure dependence of mechanical properties of SbSI compound in paraelectric phase by Ab Initio method. Computational Condensed Matter, 28, e00568. https://doi.org/10.1016/J.COCOM.2021.E00568
  • Pugh, S. F., 1954. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, 823–843. https://doi.org/10.1080/14786440808520496
  • Ranganathan, S. I., Ostoja-Starzewski, M., 2008. Universal Elastic Anisotropy Index. APS, 101. https://doi.org/10.1103/PhysRevLett.101.055504
  • Sarpkaya, A. M., Arıkan, N., 2022. Kübik perovskit LaZnO3 bileşiğinin yapısal, elektronik, elastik ve termodinamik özelliklerini araştırmak için ab initio hesaplamaları. Osmaniye Korkut Ata Üniversitesi Fen Edebiyat Fakültesi Dergisi. https://doi.org/10.54990/okufed.1215703
  • Surucu, G., Erkisi, A., 2018. The First Principles Investigation of Structural, Electronic, Mechanical and Lattice Dynamical Properties of the B and N Doped M2AX Type MAX Phases Ti2AlB0.5C0.5 and Ti2AlN0.5C0.5 Compounds. Journal of Boron. https://doi.org/10.30728/boron.333855
  • Tian, Y., Xu, B., Zhao, Z., 2012. Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33, 93–106. https://doi.org/10.1016/J.IJRMHM.2012.02.021
  • Yousef, E. S., El-Adawy, A., El-KheshKhany, N., 2006. Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139, 108–113. https://doi.org/10.1016/J.SSC.2006.05.022
  • Zhu, X., Zhou, J., Zhu, J., Liu, Z., Li, Y., Al-Kassab, T. 2014. Structural Characterization and Optical Properties of Perovskite ZnZrO3 Nanoparticles. Journal of the American Ceramic Society, 97, 1987–1992. https://doi.org/10.1111/jace.12883

Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik ve Termodinamik Özelliklerinin ab Initio Yöntemi ile İncelenmesi

Year 2023, , 858 - 864, 31.08.2023
https://doi.org/10.35414/akufemubid.1263710

Abstract

Açık kaynak Quantum Espresso (QE) kodu ile kübik, Pm-3m uzay grubu(no:221) HfZnO3 bileşiğinin yapısal optimizasyonu ile örgü sabiti 3,78 Å olarak tahmin edildi. Hesaplanan bu değer önceki teorik çalışma ile mükemmel uyum sağlamaktadır. Ortam basıncında hesaplanan elastik sabitleri C11(304,8), C12(134,3) ve C44(19,1) GPa. Hesaplanan elastik sabitlerinden elastik modül, anizotropi, sertlik, erime sıcaklığı, Debye sıcaklığı gibi mekanik ve termodinamik özellikler incelendi. Yapılan hesaplamalar sonucunda HfZnO3 bileşiği mekanik olarak kararlı, yumuşak ve sünek karakterde olduğu görüldü. Quasi-harmonik model ile 0-800 K sıcaklığında titreşim enerjisi, serbest enerji, entropi ve özgül ısı kapasitesi değerlendirildi.

References

  • Arikan, N., Dikici Yildiz, G., Yildiz, Y. G., İyigör, A., 2020. Electronic, Elastic, Vibrational and Thermodynamic Properties of HfIrX (X = As, Sb and Bi) Compounds: Insights from DFT-Based Computer Simulation. Journal of Electronic Materials, 49, 3052–3062. https://doi.org/10.1007/s11664-020-08029-6
  • Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O., 2001. First-principles elastic constants and electronic structure of α−Pt2 Si and PtSi. Physical Review B, 63, 134112. https://doi.org/10.1103/PhysRevB.63.134112
  • Erkişi, A., Gökoğlu, G., Sürücü, G., Ellialtıoğlu, R., Yıldırım, E. K., 2016. First-principles investigation of LaGaO 3 and LaInO 3 lanthanum perovskite oxides. Philosophical Magazine, 96, 2040–2058. https://doi.org/10.1080/14786435.2016.1189100
  • Fine, M. E., Brown, L. D., Marcus, H. L., 1984. Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18, 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Fischer, T. H., Almlöf, J., 1992. General methods for geometry and wave function optimization. The Journal of Physical Chemistry, 96, 9768–9774. https://doi.org/10.1021/j100203a036
  • Gaillac, R., Pullumbi, P., Coudert, F.-X., 2016. ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28, 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., … Wentzcovitch, R. M., 2009. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21. https://doi.org/10.1088/0953-8984/21/39/395502
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K. A., 2013. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002. https://doi.org/10.1063/1.4812323
  • Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Rühl, S., Wolverton, C., 2015. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Computational Materials, 1, 15010. https://doi.org/10.1038/npjcompumats.2015.10
  • Koriba, I., Lagoun, B., Cheriet, A., Guibadj, A., Belhadj, S., Ameur, A., Aissani, L., Alhussein, A., 2022. Phase stability, mechanical and optoelectronic properties of lanthanum chromite-based perovskite oxide. Applied Physics A, 128, 82. https://doi.org/10.1007/s00339-021-05150-z
  • Methfessel, M., Paxton, A. T., 1989. High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40, 3616. https://doi.org/10.1103/PhysRevB.40.3616
  • Özer, T., 2018. Determination of melting temperature (H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, B. Direkci (ed.); ss. 87–99). 4 th International Congress on Multidisciplinary Studies.
  • Özer, T., 2019. Study of first principles on anisotropy and elastic constants of Y3Al2 compound. Chinese Journal of Physics, 61, 180–189. https://doi.org/10.1016/j.cjph.2019.08.011
  • Özer, T., 2020. Study of first principles on anisotropy and elastic constants of YAl3 compound. Canadian Journal of Physics, 98(4), 357–363. https://doi.org/10.1139/cjp-2018-0448
  • Özer, T., 2021. Investigation of pressure dependence of mechanical properties of SbSI compound in paraelectric phase by Ab Initio method. Computational Condensed Matter, 28, e00568. https://doi.org/10.1016/J.COCOM.2021.E00568
  • Pugh, S. F., 1954. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, 823–843. https://doi.org/10.1080/14786440808520496
  • Ranganathan, S. I., Ostoja-Starzewski, M., 2008. Universal Elastic Anisotropy Index. APS, 101. https://doi.org/10.1103/PhysRevLett.101.055504
  • Sarpkaya, A. M., Arıkan, N., 2022. Kübik perovskit LaZnO3 bileşiğinin yapısal, elektronik, elastik ve termodinamik özelliklerini araştırmak için ab initio hesaplamaları. Osmaniye Korkut Ata Üniversitesi Fen Edebiyat Fakültesi Dergisi. https://doi.org/10.54990/okufed.1215703
  • Surucu, G., Erkisi, A., 2018. The First Principles Investigation of Structural, Electronic, Mechanical and Lattice Dynamical Properties of the B and N Doped M2AX Type MAX Phases Ti2AlB0.5C0.5 and Ti2AlN0.5C0.5 Compounds. Journal of Boron. https://doi.org/10.30728/boron.333855
  • Tian, Y., Xu, B., Zhao, Z., 2012. Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33, 93–106. https://doi.org/10.1016/J.IJRMHM.2012.02.021
  • Yousef, E. S., El-Adawy, A., El-KheshKhany, N., 2006. Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139, 108–113. https://doi.org/10.1016/J.SSC.2006.05.022
  • Zhu, X., Zhou, J., Zhu, J., Liu, Z., Li, Y., Al-Kassab, T. 2014. Structural Characterization and Optical Properties of Perovskite ZnZrO3 Nanoparticles. Journal of the American Ceramic Society, 97, 1987–1992. https://doi.org/10.1111/jace.12883
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tahsin Özer 0000-0003-0344-7118

Nihat Arıkan 0000-0001-8028-3132

Ali İhsan 0000-0002-3912-0670

Early Pub Date August 29, 2023
Publication Date August 31, 2023
Submission Date March 11, 2023
Published in Issue Year 2023

Cite

APA Özer, T., Arıkan, N., & İhsan, A. (2023). Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik ve Termodinamik Özelliklerinin ab Initio Yöntemi ile İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(4), 858-864. https://doi.org/10.35414/akufemubid.1263710
AMA Özer T, Arıkan N, İhsan A. Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik ve Termodinamik Özelliklerinin ab Initio Yöntemi ile İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2023;23(4):858-864. doi:10.35414/akufemubid.1263710
Chicago Özer, Tahsin, Nihat Arıkan, and Ali İhsan. “Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik Ve Termodinamik Özelliklerinin Ab Initio Yöntemi Ile İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 4 (August 2023): 858-64. https://doi.org/10.35414/akufemubid.1263710.
EndNote Özer T, Arıkan N, İhsan A (August 1, 2023) Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik ve Termodinamik Özelliklerinin ab Initio Yöntemi ile İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 4 858–864.
IEEE T. Özer, N. Arıkan, and A. İhsan, “Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik ve Termodinamik Özelliklerinin ab Initio Yöntemi ile İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 4, pp. 858–864, 2023, doi: 10.35414/akufemubid.1263710.
ISNAD Özer, Tahsin et al. “Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik Ve Termodinamik Özelliklerinin Ab Initio Yöntemi Ile İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/4 (August 2023), 858-864. https://doi.org/10.35414/akufemubid.1263710.
JAMA Özer T, Arıkan N, İhsan A. Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik ve Termodinamik Özelliklerinin ab Initio Yöntemi ile İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:858–864.
MLA Özer, Tahsin et al. “Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik Ve Termodinamik Özelliklerinin Ab Initio Yöntemi Ile İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 4, 2023, pp. 858-64, doi:10.35414/akufemubid.1263710.
Vancouver Özer T, Arıkan N, İhsan A. Kübik HfZnO3 Bileşiğinin Yapısal, Mekanik ve Termodinamik Özelliklerinin ab Initio Yöntemi ile İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(4):858-64.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.