Investigation of The Effect of Radial Width and Axial Depth Parameters on Surface Quality in Milling of White Marbles
Year 2023,
, 1267 - 1280, 30.10.2023
Erkan Özkan
,
Oğuzhan Öz
,
Nazmiye Tuğral
Abstract
In this study, surface quality and tangential cutting force and radial width (ae) and axial deep (ap)
parameters were investigated in the processing of white marble, which is a natural building material.
Five different white marbles were used in the experiments and the taguchi method was applied as the
test method. Depending on the number and level of parameters, the L9 orthogonal array was chosen.
Cutting forces and surface roughness data were collected for each marble. The optimal level and
contribution percentage of each parameter was determined by applying the analysis of variance with
the signal-to-noise (S/N) ratio. The Fr and Ra factors for all marbles were found to be ae:1 mm and ap:1
mm. Depending on the significance level, axial depth of cut (ap) was the primary effective parameter
(65-86% for Fr; 42-78% for Ra), while radial depth of cut was the secondary effective parameter (3-24%
for Fr; 16-35% for Ra). It can be said that the feed rate parameter was not an effective parameter in
general.As a result of regression analysis, a significant relationship of 83% was observed between Ra
surface roughness value and mineral grain size. Grain size has been the mineralogical-petrographic
feature affecting the surface quality of marbles.
References
- Altintas, Y., 1994. Direct adaptive control of end milling process. Int. J Mach Tools Manuf., 34(4), 461–472. https://doi.org/10.1016/0890- 6955(94)90078-7.
- Arunramnath, R., Thyla, P.R., Mahendrakumar, N., Ramesh, M., Siddeshwaran, A., 2019. Multi-attribute optimization of end milling epoxy granite composites using TOPSIS. Mater Manuf Process, 34(5), 530–543. https://doi.org/10.1080/10426914.2019.1566960.
- European Standards Institute (EN) 2003 Natural stone test methods determination of Knoop hardness, Standard No. EN 14205. 2003; English
- European Standards Institute (EN) 2006 Natural stone test methods determination of real density and apparent density, and of total and open porosity. Standard No. EN 1936. English
- European Standards Institute (EN) 2006 Natural stone test methods determination of uniaxial compressive strength. Standard No. EN 1926. English
- European Standards Institute (EN) 2007. Characterization of waste and soil-determination of elemental composition by X-ray fluorescence. Standard No. EN 15309. English
- European Standards Institute (EN) 2008 Natural stone test methods determination of water absorption at atmospheric pressure. Standard No. EN 13755. English
- European Standards Institute (EN) 2008 Natural stone test methods determination of flexural strength under constant moment. Standard No. EN 13161. English
- European Standards Institute (EN) 2017 Natural stone test methods determination of the abrasion resistance. Standard No. EN 14157
- Gálos, M., Gyurika, I.G., 2014. Quality measuring numbers of milled edges of granite surfaces. Period Polytech Civ Eng., 58(2), 121–129. https://doi.org/10.3311/PPci.2158.
- Gyurika, I.G., 2018. Researching the effects of feedrate and diamond grain size on edge chipping of milled granites. Tehnicki Vjesnik- Technical Gazette., 25(1), 49–55. https://doi.org/10.17559/tv-20160504130353.
- Gyurika, I.G., Szalay, T., 2019. The examination of the effect of variable cutting speeds on the surface and edge qualities of milled granite materials. Adv Mech Eng., 11(7), 1–12. https://doi.org/10.1177/1687814019836319.
- Kenda, J., Kopač, J., 2009. Diamond tools for machining of granite and their wear. Journal of Mechanical Engineering., 12(55), 775–780.
- Liu, J., Cheng, K., Ding, H., Chen, S., 2020. An investigation of influence of cutting parameters on three-dimensional surface topography in micromilling SiCp/Al composites, Proc IMechE Part B: J Engineering Manufacture. https://doi.org/10.1177/0954405420971098.
- Ma, W., Wang, R., Zhou, X., Xie, X., 2020. The finite element analysis–based simulation and artificial neural network–based prediction for milling processes of aluminum alloy 7050. Proc IMechE Part B: J Engineering Manufacture. https://doi.org/ 10.1177/0954405420932442.
- Moayyedian, M., Mohajer, A., Kazemian, M.G., Mamedov, A., Derakhshandeh, J.F., 2020. Surface roughness analysis in milling machining using design of experiment. SN Applied Sciences, 2, 1698. https://doi.org/10.1007/s42452-020-03485-5.
- Nagode, M., Fajdıga, M., 1995. Experiment Design for Structures Loading State Determination. Strojniški vestnik- Journal of Mechanical Engineering, 41, 257-262.
- Othman, K., Ghani, J.A., Juri, A., Mohd, M.S.R., Kassim, S., Haron, C.H.C., 2020. Optimization of Tool Life and Surface Roughness for Hypereutectic Al – Si Alloys in Face Milling. Journal of Mechanical Engineering, 17(2), 27-44.
- Öktem, K., Erzurumlu, T., Çöl, M., 2006. A study of the Taguchi optimization method for surface roughness in finish milling of mold surfaces. The International Journal of Advanced Manufacturing Technology, 28, 694-700. https://doi.org/10.1007/s00170-004-2435-6.
- Özkan, E., Sarıışık, G., Ceylan, S., 2015. Application and productivity analysis of new channel opening method in natural stone quarries with diamond wire cutting machine. Arabian Journal of Geosciences, 8(2), 1089–1098. https://doi.org/10.1007/s12517-013-1230-9.
- Özkan, E., Öz, O., 2020. Determination of appropriate cutting parameters depending on surface roughness by Taguchi method in milling of marbles. Arabian Journal of Geosciences, 13, 532. https://doi.org/10.1007/s12517-020-05380-0.
- Özkan E., Öz O., 2021. The effect of characterization of carbide end milled limestones on optimal parameters. Arabian Journal of Geosciences, 14, 1181, https://doi.org/10.1007/s12517-020-05380-0.
- Pham, T.H., Nguyen, D.T., Banh, T.L., Tong, V.C., 2019. Experimental study on the chip morphology, tool–chip contact length, workpiece vibration, and surface roughness during high-speed face milling of A6061 aluminum alloy. Proc IMechE Part B: J Engineering Manufacture, https://doi.org/10.1177/0954405419863221
- Polini, W., Turchetta, S., 2004. Force and specific energy in stone cutting by diamond mill. Int J Mach Tools Manuf., 44(11), 1189–1196. https://doi.org/10.1016/j.ijmachtools.2004.04.001.
- Sarıışık, G., Özkan, E., 2016. Bilgisayar Kontrollü Makine (CNC) ile Mermerlerin İşlenebilirliğinde Kesme Kuvveti ve Spesifik Enerjinin Belirlenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 16(2), 420–430. https://doi.org/10.5578/fmbd.27592.
- Sarıışık, G., Özkan, E., 2017. Mermerlerin CNCMakinesi ile İşlenmesinde Kesme Kuvvetleri ve Spesifik Kesme Enerjisinin İstatistiksel Analizi. Journal of Science and. Engineering, 19(55), 178–193. https://doi.org/10.21205/deufmd.2017195514.
- Sarıışık, G., Özkan, E., 2018. Effects of natural rock properties on cutting forces, specific energy and specific cutting energy by four-axis machine. Arabian Journal of Geosciences, 11(84). https://doi.org/10.1007/s12517-018-3424-7.
- Taguchi, G., Phadke, M.S., 1984. Quality engineering through design optimization. IEEE Global Telecommunications Conference GLOBECOM '84, November 26-29, Atlanta, GA,; 77-96. https://doi.org/10.1007/978-1-4684-1472-1_5.
- Taguchi, G., Tsai, S.C., 1995. Quality engineering (Taguchi methods) for the development of electronic circuit technology. IEEE Transactıons On Reliability, 44(2), 225–229. https://doi.org/10.1109/24.387375.
- Taguchi, G., Chowdhury, S., Wu, Y., 2004. Taguchi’s quality engineering handbook, JohnWiley and Sons, Inc., Hoboken New Jersey, USA,.
- Teruo, M., 2011. Taguchi methods benefits, impacts, mathematics, statistics, and applications. ASME Press, New York, USA.
- Tien, D.H., Nguyen, N.T., Do, D.T., Nguyen, V.C., Nguyen, V.Q., Nguyen, V.L., Nguyen, H.P., 2020. Optimization of cutting parameters and cutter helix angle for Minimum Surface Roughness in Flat –end Milling of Al6061. TRKU (Technology Reports of Kansai University), 62(4), 2647–2656.
- Tuğral, N., 2019. CNC makinesinde gerçek mermerlerin kesme genişliğinin yüzey kalitesine etkisinin taguchi yöntemiyle incelenmesi, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Afyonkarahisar, 81.
- Turchetta, S., Polini, W., Buyuksagis, I.S., 2009. Investigation on stone machining performance using force and specific energy. Adv Mech Eng., 1, 175817, https://doi.org/10.1155/2009/175817.
- Turchetta, S., 2012. Cutting force and diamond tool wear in stone machining. Int J Adv Manuf Technol., 61(5-8), 441–448, https://doi.org/10.1007/s00170-011-3717-4.
- Yuvaraj, T., Suresh, P., 2019. Analysis of EDM Process Parameters on Inconel 718 Using the Grey-Taguchi and Topsis Methods. Strojniški Vestnik- Journal of Mechanical Engineering. 65(10), 557-564. https://doi.org/10.5545/sv-jme.2019.6194.
- Wang, F., Liu, S., Guo, Z., Cao, L., 2020. Analysis of cutting forces and chip formation in milling of marble. Int J Adv Manuf Technol., 108, 2907– 2916. https://doi.org/10.1007/s00170-020-05575-5.
Beyaz Mermerlerin Frezelemesinde Radyal Genişlik ve Eksenel Derinlik Parametrelerinin Yüzey Kalitesine Etkisinin Araştırılması
Year 2023,
, 1267 - 1280, 30.10.2023
Erkan Özkan
,
Oğuzhan Öz
,
Nazmiye Tuğral
Abstract
Bu çalışmada, doğal bir yapı malzemesi olan beyaz mermerin işlenmesinde yüzey kalitesi ve teğetsel
kesme kuvveti ile radyal genişlik (ae) ve eksenel derinlik (ap) parametreleri araştırılmıştır. Deneylerde
beş farklı beyaz mermer kullanılmış ve test yöntemi olarak Taguchi yöntemi uygulanmıştır. Parametre
sayısı ve seviyesine bağlı olarak L9 ortogonal dizisi seçilmiştir. Her bir mermer için kesme kuvvetleri ve
yüzey pürüzlülüğü verileri toplanmıştır. Her bir parametrenin optimum seviyesi ve katkı yüzdesi, sinyal
gürültü (S/N) oranı ile varyans analizi uygulanarak belirlenmiştir. Tüm mermerler için Fr ve Ra faktörleri,
ae:1 mm ve ap:1 mm olarak bulundu. Anlamlılık seviyesine bağlı olarak, eksenel kesme derinliği (ap)
birincil etkin parametre (Fr için 65-86%; Ra için 42-78%), radyal kesme derinliği ikincil etkin parametre
(3-24% for Fr; 16-35% for Ra) olmuştur. İlerleme hızı parametresinin ise genel olarak etkin bir parametre
olmadı söylenebilir. Regresyon analizi sonucunda Ra yüzey pürüzlülüğü değeri ile mineral tane boyutu
arasında %83 oranında anlamlı bir ilişki gözlenmiştir. Tane boyutu, mermerlerin yüzey kalitesini
etkileyen mineralojik-petrografik özellik olmuştur.
References
- Altintas, Y., 1994. Direct adaptive control of end milling process. Int. J Mach Tools Manuf., 34(4), 461–472. https://doi.org/10.1016/0890- 6955(94)90078-7.
- Arunramnath, R., Thyla, P.R., Mahendrakumar, N., Ramesh, M., Siddeshwaran, A., 2019. Multi-attribute optimization of end milling epoxy granite composites using TOPSIS. Mater Manuf Process, 34(5), 530–543. https://doi.org/10.1080/10426914.2019.1566960.
- European Standards Institute (EN) 2003 Natural stone test methods determination of Knoop hardness, Standard No. EN 14205. 2003; English
- European Standards Institute (EN) 2006 Natural stone test methods determination of real density and apparent density, and of total and open porosity. Standard No. EN 1936. English
- European Standards Institute (EN) 2006 Natural stone test methods determination of uniaxial compressive strength. Standard No. EN 1926. English
- European Standards Institute (EN) 2007. Characterization of waste and soil-determination of elemental composition by X-ray fluorescence. Standard No. EN 15309. English
- European Standards Institute (EN) 2008 Natural stone test methods determination of water absorption at atmospheric pressure. Standard No. EN 13755. English
- European Standards Institute (EN) 2008 Natural stone test methods determination of flexural strength under constant moment. Standard No. EN 13161. English
- European Standards Institute (EN) 2017 Natural stone test methods determination of the abrasion resistance. Standard No. EN 14157
- Gálos, M., Gyurika, I.G., 2014. Quality measuring numbers of milled edges of granite surfaces. Period Polytech Civ Eng., 58(2), 121–129. https://doi.org/10.3311/PPci.2158.
- Gyurika, I.G., 2018. Researching the effects of feedrate and diamond grain size on edge chipping of milled granites. Tehnicki Vjesnik- Technical Gazette., 25(1), 49–55. https://doi.org/10.17559/tv-20160504130353.
- Gyurika, I.G., Szalay, T., 2019. The examination of the effect of variable cutting speeds on the surface and edge qualities of milled granite materials. Adv Mech Eng., 11(7), 1–12. https://doi.org/10.1177/1687814019836319.
- Kenda, J., Kopač, J., 2009. Diamond tools for machining of granite and their wear. Journal of Mechanical Engineering., 12(55), 775–780.
- Liu, J., Cheng, K., Ding, H., Chen, S., 2020. An investigation of influence of cutting parameters on three-dimensional surface topography in micromilling SiCp/Al composites, Proc IMechE Part B: J Engineering Manufacture. https://doi.org/10.1177/0954405420971098.
- Ma, W., Wang, R., Zhou, X., Xie, X., 2020. The finite element analysis–based simulation and artificial neural network–based prediction for milling processes of aluminum alloy 7050. Proc IMechE Part B: J Engineering Manufacture. https://doi.org/ 10.1177/0954405420932442.
- Moayyedian, M., Mohajer, A., Kazemian, M.G., Mamedov, A., Derakhshandeh, J.F., 2020. Surface roughness analysis in milling machining using design of experiment. SN Applied Sciences, 2, 1698. https://doi.org/10.1007/s42452-020-03485-5.
- Nagode, M., Fajdıga, M., 1995. Experiment Design for Structures Loading State Determination. Strojniški vestnik- Journal of Mechanical Engineering, 41, 257-262.
- Othman, K., Ghani, J.A., Juri, A., Mohd, M.S.R., Kassim, S., Haron, C.H.C., 2020. Optimization of Tool Life and Surface Roughness for Hypereutectic Al – Si Alloys in Face Milling. Journal of Mechanical Engineering, 17(2), 27-44.
- Öktem, K., Erzurumlu, T., Çöl, M., 2006. A study of the Taguchi optimization method for surface roughness in finish milling of mold surfaces. The International Journal of Advanced Manufacturing Technology, 28, 694-700. https://doi.org/10.1007/s00170-004-2435-6.
- Özkan, E., Sarıışık, G., Ceylan, S., 2015. Application and productivity analysis of new channel opening method in natural stone quarries with diamond wire cutting machine. Arabian Journal of Geosciences, 8(2), 1089–1098. https://doi.org/10.1007/s12517-013-1230-9.
- Özkan, E., Öz, O., 2020. Determination of appropriate cutting parameters depending on surface roughness by Taguchi method in milling of marbles. Arabian Journal of Geosciences, 13, 532. https://doi.org/10.1007/s12517-020-05380-0.
- Özkan E., Öz O., 2021. The effect of characterization of carbide end milled limestones on optimal parameters. Arabian Journal of Geosciences, 14, 1181, https://doi.org/10.1007/s12517-020-05380-0.
- Pham, T.H., Nguyen, D.T., Banh, T.L., Tong, V.C., 2019. Experimental study on the chip morphology, tool–chip contact length, workpiece vibration, and surface roughness during high-speed face milling of A6061 aluminum alloy. Proc IMechE Part B: J Engineering Manufacture, https://doi.org/10.1177/0954405419863221
- Polini, W., Turchetta, S., 2004. Force and specific energy in stone cutting by diamond mill. Int J Mach Tools Manuf., 44(11), 1189–1196. https://doi.org/10.1016/j.ijmachtools.2004.04.001.
- Sarıışık, G., Özkan, E., 2016. Bilgisayar Kontrollü Makine (CNC) ile Mermerlerin İşlenebilirliğinde Kesme Kuvveti ve Spesifik Enerjinin Belirlenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 16(2), 420–430. https://doi.org/10.5578/fmbd.27592.
- Sarıışık, G., Özkan, E., 2017. Mermerlerin CNCMakinesi ile İşlenmesinde Kesme Kuvvetleri ve Spesifik Kesme Enerjisinin İstatistiksel Analizi. Journal of Science and. Engineering, 19(55), 178–193. https://doi.org/10.21205/deufmd.2017195514.
- Sarıışık, G., Özkan, E., 2018. Effects of natural rock properties on cutting forces, specific energy and specific cutting energy by four-axis machine. Arabian Journal of Geosciences, 11(84). https://doi.org/10.1007/s12517-018-3424-7.
- Taguchi, G., Phadke, M.S., 1984. Quality engineering through design optimization. IEEE Global Telecommunications Conference GLOBECOM '84, November 26-29, Atlanta, GA,; 77-96. https://doi.org/10.1007/978-1-4684-1472-1_5.
- Taguchi, G., Tsai, S.C., 1995. Quality engineering (Taguchi methods) for the development of electronic circuit technology. IEEE Transactıons On Reliability, 44(2), 225–229. https://doi.org/10.1109/24.387375.
- Taguchi, G., Chowdhury, S., Wu, Y., 2004. Taguchi’s quality engineering handbook, JohnWiley and Sons, Inc., Hoboken New Jersey, USA,.
- Teruo, M., 2011. Taguchi methods benefits, impacts, mathematics, statistics, and applications. ASME Press, New York, USA.
- Tien, D.H., Nguyen, N.T., Do, D.T., Nguyen, V.C., Nguyen, V.Q., Nguyen, V.L., Nguyen, H.P., 2020. Optimization of cutting parameters and cutter helix angle for Minimum Surface Roughness in Flat –end Milling of Al6061. TRKU (Technology Reports of Kansai University), 62(4), 2647–2656.
- Tuğral, N., 2019. CNC makinesinde gerçek mermerlerin kesme genişliğinin yüzey kalitesine etkisinin taguchi yöntemiyle incelenmesi, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Afyonkarahisar, 81.
- Turchetta, S., Polini, W., Buyuksagis, I.S., 2009. Investigation on stone machining performance using force and specific energy. Adv Mech Eng., 1, 175817, https://doi.org/10.1155/2009/175817.
- Turchetta, S., 2012. Cutting force and diamond tool wear in stone machining. Int J Adv Manuf Technol., 61(5-8), 441–448, https://doi.org/10.1007/s00170-011-3717-4.
- Yuvaraj, T., Suresh, P., 2019. Analysis of EDM Process Parameters on Inconel 718 Using the Grey-Taguchi and Topsis Methods. Strojniški Vestnik- Journal of Mechanical Engineering. 65(10), 557-564. https://doi.org/10.5545/sv-jme.2019.6194.
- Wang, F., Liu, S., Guo, Z., Cao, L., 2020. Analysis of cutting forces and chip formation in milling of marble. Int J Adv Manuf Technol., 108, 2907– 2916. https://doi.org/10.1007/s00170-020-05575-5.