Research Article
BibTex RIS Cite

Silindirik Depolama Tanklarında Oluşan Çalkantı Etkisinin Akışkan Türüne Bağlı Değişimi

Year 2023, , 1235 - 1245, 30.10.2023
https://doi.org/10.35414/akufemubid.1279776

Abstract

Bu çalışma deprem kuvvetinin sıvı depoları gibi özel yapılardaki yıkıcı etkisini, akışkan- yapı etkileşimi
problemi açısından ortaya koymak amacı ile gerçekleştirilmiştir. Yapının dinamik davranışı tank öz
ağırlığı, akışkan ağırlığı, çalkantı kuvveti ve deprem kuvveti dikkate alınarak araştırılmıştır. Düzce
depremine ilişkin veriler kullanılarak doğrusal olmayan analizler yapılmıştır. ABAQUS sonlu elemanlar
programı ile yapılan analizlerde çelik tank Lagrangian, seçilen üç farklı akışkan Eulerian yaklaşımı ile
modellenmiştir. Hesaplar Coupled Eulerian–Lagrangian metod (CEL) üzerinden sürdürülmüştür.
Analizlerde açık zaman entegrasyonu kullanılmıştır. Üstü kubbe şeklinde kapatılan silindirik çelik tankın
%70 oranında su, yağ ve petrol ile dolu olduğu kabul edilmiştir. Tank üzerinde belirlenen referans
noktalarında meydana gelen en büyük yer değiştirme ve Von Mises gerilme değerleri karşılaştırmalı
olarak sunulmuştur. Serbest yüzey profilleri her akışkan için ayrı ayrı elde edilmiştir. Depolanan akışkan
türüne bağlı olarak çalkantı kaynaklı hidrodinamik kuvvetlerin yapı üzerindeki etkisinin değiştiği
gözlenmiştir.

Supporting Institution

TÜBİTAK Bilim İnsanı Destek Programı

Project Number

1919B012106330

Thanks

Bu projeyi “2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı” 2022/1 dönemi kapsamında değerlendirerek maddi destek sağlayan TÜBİTAK Bilim İnsanı Destek Programları Başkanlığı’na teşekkürlerimizi sunarız.

References

  • Bayer, A.M., 2007. Silindirik Depolama Tanklarında Çalkantı Nedeniyle Oluşan İç Basınçların Azaltılmasına Yönelik Gövde Perdelerinin Tasarımı. Doktora Tezi, Fen Bilimleri Enstitüsü, İstanbul, 220.
  • Bayraktar, A., Sevim, B., Altunışık, A.C., ve Türker, T., 2010. Effect of the model updating on the earthquake behavior of steel storage tanks. Journal of Constructional Steel Research, 66, 462-469.
  • Chaduvula, U., Patel, D. ve Gopalakrishnan, N., 2013. Fluid-structure-soil interaction effects on seismic behaviour of elevated water tanks. Procedia Engineering, 51, 84-91.
  • Cho. K. and Cho. S., 2007. Seismic response of cylindrical steel tanks considering fluid-structure interaction. Steel Structures, 7, 147–152.
  • Code, P., 2005. Eurocode 8: Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. Brussels: European Committee for Standardization.
  • Council, B.S.S., 2003. National Earthquake Hazard Reduction Program recommended provisions for seismic regulations for 348 new buildings and other structures—part 2: commentary (FEMA 450-2). Federal Emergency Management Agency, Washington, DC.
  • Çelik, A.İ., 2018. Silindirik Çelik Su Tanklarının Sismik Analizinin Fem ile Gerçekleştirilmesi. In 2nd International Symposium on Natural Hazards and Disaster Management, Sakarya University Culture and Congress Center, Sakarya-Turkey.
  • Çelik, A.İ., Köse, M.M., Akgül, T., & Apay, A.C., 2020. Yıkıcı sismik yükler altında silindirik çelik su tanklarının doğrusal olmayan analizi. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler, 8(2), 154-170.
  • Djermane, M., Zaoui, D., Labbaci, B., Hammadi, F., 2014. Dynamic buckling of steel tanks under seismic excitation: numerical evaluation of code provisions. Eng. Struct, 70 181–196. Dooms, D., Degrande. G., De Roeck, G. ve Reynders, E., 2006. Finite element modelling of a silo based on experimental mod alanalysis. Engineering Strcutres, 28, 532-542.
  • Graham, E.W. and Rodriguez, A.M., 1952. The characteristics of fuel motion which affect airplane Dynamics. Journal of Applied Mechanics, 19, 381-388.
  • Gücüyen, E. & Erdem, R.T., 2019. Kompozit deniz yapısının dalga kuvvetleri altında incelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(3), 1125-1136.
  • Housner, G., 1957. Dynamic pressure on accelerated fluid containers. Bulletin of the Seismological Society of America, 47, 15-35. 103.
  • Housner, G.W., 1963. The dynamic behavior of water tanks. Bulletin of the seismological society of America, 53(2), 381-387.
  • Jacobsen, L.S., 1949. Impulsive hydrodynamics of fluid inside a cylindrical tank and of a fluid surrounding a cylindrical pier. Bulletin of the Seismological Society of America, 39, 189- 204.
  • Jianbao, F., Maotian, L., Qing, Y. ve Tingkai, N., 2010. Three-dimensional finite element analysis of wall pressure on large diameter silos. Journal of Convergence Information Technology, 5(7), 120-128.
  • Kamıla, K., Ivan. G., Eva. K., 2014. Dynamic time-history response of cylindrical tank considering fluid-structure interaction due to earthquake. Applied Mechanics & Materials, 617.
  • Kang, T.W., Yang, H.I. & Jeon, J.S., 2019. Earthquake-induced sloshing effects on the hydrodynamic pressure response of rigid cylindrical liquid storage tanks using CFD simulation. Engineering Structures, 197, 109376.
  • Liu, H., Xu, K., Zhao, Y., 2016. Numerical investigation on the penetration of gravity installed anchors by a coupled Eulerian– Lagrangian approach. Applied Ocean Research, 60, 94–108.
  • Liu, Z., Yuan, K., Liu, Y., Andersson, M., & Li, Y., 2022. Fluid sloshing hydrodynamics in a cryogenic fuel storage tank under different order natural frequencies. Journal of Energy Storage, 52, 104830. Malhotra, P.K. & Veletsos, A.S., 1994. Uplifting response of unanchored liquid-storage tanks. Journal of Structural Engineering, 120(12), 3525-3547.
  • Park. J.H., Bae. D. & Oh. C.K., 2016. Experimental study on the dynamic behavior of a cylindrical liquid storage tank subjected to seismic excitation. International Journal of Steel Structures, 16(3), 935-945.
  • Sharma. V., Arun. C.O. & Krishna. I.P., 2019. Development and validation of a simple two degree of freedom model for predicting maximum fundamental sloshing mode wave height in a cylindrical tank. Journal of Sound and Vibration, 461, 114906.
  • Shrimali, M.K. ve Jangid, R.S., 2003. Earthquake response of isolated elevated liquid storage steel tanks. Journal of Constructional Steel Research, 59, 1267-1288.
  • Virella, J.C., Godoy, L.A. ve Suarez, L.E., 2003. Influence of the roof on the natural periods of empty steel tanks. Engineering Structures, 25, 877-887.
  • Virella, J.C., Suarez, L.E. ve Godoy, L.A., 2005. Effect of pre-stress states on the impulsive modes of vibration of cylindrical tank-liquid systems under horizontal motions. Journal of Vibration and Control, 11(9), 1195-1220.
  • Wei, G. & Zhang, J., 2020. Numerical study of the filling process of a liquid hydrogen storage tank under different sloshing conditions. Processes, 8(9), 1020.

Variation of Sloshing Effect in Cylindrical Storage Tanks Depending on Fluid Type

Year 2023, , 1235 - 1245, 30.10.2023
https://doi.org/10.35414/akufemubid.1279776

Abstract

This study is conducted to demonstrate the destructive effect of earthquake force on special structures
such as liquid tanks in terms of fluid-structure interaction problem. The dynamic behavior of the
structure is investigated considering the tank's own weight, fluid weight, sloshing force, and earthquake
force. Nonlinear analysis is performed using data from the Düzce earthquake. In the analyses applied
with the ABAQUS finite element program, the steel tank is modeled using the Lagrangian approach, and
three different fluid are modeled with the Eulerian approach. The calculations are carried out using the
Coupled Eulerian-Lagrangian (CEL) method. Explicit time integration is utilized in the analysis. It is
assumed that the torisperical closed cylindrical steel tank is filled with 70% water, oil, and petroleum.
The maximum values of displacement and Von Mises stress at the reference points on the tank are
presented comparatively. The free surface profiles are obtained for each fluid type separately. It has
been observed that the effect of the hydrodynamic forces caused by sloshing on the structure changes
depending on the type of stored fluid.

Project Number

1919B012106330

References

  • Bayer, A.M., 2007. Silindirik Depolama Tanklarında Çalkantı Nedeniyle Oluşan İç Basınçların Azaltılmasına Yönelik Gövde Perdelerinin Tasarımı. Doktora Tezi, Fen Bilimleri Enstitüsü, İstanbul, 220.
  • Bayraktar, A., Sevim, B., Altunışık, A.C., ve Türker, T., 2010. Effect of the model updating on the earthquake behavior of steel storage tanks. Journal of Constructional Steel Research, 66, 462-469.
  • Chaduvula, U., Patel, D. ve Gopalakrishnan, N., 2013. Fluid-structure-soil interaction effects on seismic behaviour of elevated water tanks. Procedia Engineering, 51, 84-91.
  • Cho. K. and Cho. S., 2007. Seismic response of cylindrical steel tanks considering fluid-structure interaction. Steel Structures, 7, 147–152.
  • Code, P., 2005. Eurocode 8: Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. Brussels: European Committee for Standardization.
  • Council, B.S.S., 2003. National Earthquake Hazard Reduction Program recommended provisions for seismic regulations for 348 new buildings and other structures—part 2: commentary (FEMA 450-2). Federal Emergency Management Agency, Washington, DC.
  • Çelik, A.İ., 2018. Silindirik Çelik Su Tanklarının Sismik Analizinin Fem ile Gerçekleştirilmesi. In 2nd International Symposium on Natural Hazards and Disaster Management, Sakarya University Culture and Congress Center, Sakarya-Turkey.
  • Çelik, A.İ., Köse, M.M., Akgül, T., & Apay, A.C., 2020. Yıkıcı sismik yükler altında silindirik çelik su tanklarının doğrusal olmayan analizi. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler, 8(2), 154-170.
  • Djermane, M., Zaoui, D., Labbaci, B., Hammadi, F., 2014. Dynamic buckling of steel tanks under seismic excitation: numerical evaluation of code provisions. Eng. Struct, 70 181–196. Dooms, D., Degrande. G., De Roeck, G. ve Reynders, E., 2006. Finite element modelling of a silo based on experimental mod alanalysis. Engineering Strcutres, 28, 532-542.
  • Graham, E.W. and Rodriguez, A.M., 1952. The characteristics of fuel motion which affect airplane Dynamics. Journal of Applied Mechanics, 19, 381-388.
  • Gücüyen, E. & Erdem, R.T., 2019. Kompozit deniz yapısının dalga kuvvetleri altında incelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(3), 1125-1136.
  • Housner, G., 1957. Dynamic pressure on accelerated fluid containers. Bulletin of the Seismological Society of America, 47, 15-35. 103.
  • Housner, G.W., 1963. The dynamic behavior of water tanks. Bulletin of the seismological society of America, 53(2), 381-387.
  • Jacobsen, L.S., 1949. Impulsive hydrodynamics of fluid inside a cylindrical tank and of a fluid surrounding a cylindrical pier. Bulletin of the Seismological Society of America, 39, 189- 204.
  • Jianbao, F., Maotian, L., Qing, Y. ve Tingkai, N., 2010. Three-dimensional finite element analysis of wall pressure on large diameter silos. Journal of Convergence Information Technology, 5(7), 120-128.
  • Kamıla, K., Ivan. G., Eva. K., 2014. Dynamic time-history response of cylindrical tank considering fluid-structure interaction due to earthquake. Applied Mechanics & Materials, 617.
  • Kang, T.W., Yang, H.I. & Jeon, J.S., 2019. Earthquake-induced sloshing effects on the hydrodynamic pressure response of rigid cylindrical liquid storage tanks using CFD simulation. Engineering Structures, 197, 109376.
  • Liu, H., Xu, K., Zhao, Y., 2016. Numerical investigation on the penetration of gravity installed anchors by a coupled Eulerian– Lagrangian approach. Applied Ocean Research, 60, 94–108.
  • Liu, Z., Yuan, K., Liu, Y., Andersson, M., & Li, Y., 2022. Fluid sloshing hydrodynamics in a cryogenic fuel storage tank under different order natural frequencies. Journal of Energy Storage, 52, 104830. Malhotra, P.K. & Veletsos, A.S., 1994. Uplifting response of unanchored liquid-storage tanks. Journal of Structural Engineering, 120(12), 3525-3547.
  • Park. J.H., Bae. D. & Oh. C.K., 2016. Experimental study on the dynamic behavior of a cylindrical liquid storage tank subjected to seismic excitation. International Journal of Steel Structures, 16(3), 935-945.
  • Sharma. V., Arun. C.O. & Krishna. I.P., 2019. Development and validation of a simple two degree of freedom model for predicting maximum fundamental sloshing mode wave height in a cylindrical tank. Journal of Sound and Vibration, 461, 114906.
  • Shrimali, M.K. ve Jangid, R.S., 2003. Earthquake response of isolated elevated liquid storage steel tanks. Journal of Constructional Steel Research, 59, 1267-1288.
  • Virella, J.C., Godoy, L.A. ve Suarez, L.E., 2003. Influence of the roof on the natural periods of empty steel tanks. Engineering Structures, 25, 877-887.
  • Virella, J.C., Suarez, L.E. ve Godoy, L.A., 2005. Effect of pre-stress states on the impulsive modes of vibration of cylindrical tank-liquid systems under horizontal motions. Journal of Vibration and Control, 11(9), 1195-1220.
  • Wei, G. & Zhang, J., 2020. Numerical study of the filling process of a liquid hydrogen storage tank under different sloshing conditions. Processes, 8(9), 1020.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Begum Dagli 0000-0002-2021-5450

Muhammet Ensar Yiğit 0000-0003-0161-7144

Yalçın Bostancı 0000-0003-0574-1935

Project Number 1919B012106330
Early Pub Date October 27, 2023
Publication Date October 30, 2023
Submission Date April 10, 2023
Published in Issue Year 2023

Cite

APA Dagli, B., Yiğit, M. E., & Bostancı, Y. (2023). Silindirik Depolama Tanklarında Oluşan Çalkantı Etkisinin Akışkan Türüne Bağlı Değişimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(5), 1235-1245. https://doi.org/10.35414/akufemubid.1279776
AMA Dagli B, Yiğit ME, Bostancı Y. Silindirik Depolama Tanklarında Oluşan Çalkantı Etkisinin Akışkan Türüne Bağlı Değişimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2023;23(5):1235-1245. doi:10.35414/akufemubid.1279776
Chicago Dagli, Begum, Muhammet Ensar Yiğit, and Yalçın Bostancı. “Silindirik Depolama Tanklarında Oluşan Çalkantı Etkisinin Akışkan Türüne Bağlı Değişimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 5 (October 2023): 1235-45. https://doi.org/10.35414/akufemubid.1279776.
EndNote Dagli B, Yiğit ME, Bostancı Y (October 1, 2023) Silindirik Depolama Tanklarında Oluşan Çalkantı Etkisinin Akışkan Türüne Bağlı Değişimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 5 1235–1245.
IEEE B. Dagli, M. E. Yiğit, and Y. Bostancı, “Silindirik Depolama Tanklarında Oluşan Çalkantı Etkisinin Akışkan Türüne Bağlı Değişimi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 5, pp. 1235–1245, 2023, doi: 10.35414/akufemubid.1279776.
ISNAD Dagli, Begum et al. “Silindirik Depolama Tanklarında Oluşan Çalkantı Etkisinin Akışkan Türüne Bağlı Değişimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/5 (October 2023), 1235-1245. https://doi.org/10.35414/akufemubid.1279776.
JAMA Dagli B, Yiğit ME, Bostancı Y. Silindirik Depolama Tanklarında Oluşan Çalkantı Etkisinin Akışkan Türüne Bağlı Değişimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1235–1245.
MLA Dagli, Begum et al. “Silindirik Depolama Tanklarında Oluşan Çalkantı Etkisinin Akışkan Türüne Bağlı Değişimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 5, 2023, pp. 1235-4, doi:10.35414/akufemubid.1279776.
Vancouver Dagli B, Yiğit ME, Bostancı Y. Silindirik Depolama Tanklarında Oluşan Çalkantı Etkisinin Akışkan Türüne Bağlı Değişimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(5):1235-4.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.