Research Article
BibTex RIS Cite

İleri Biyolojik Kentsel Atıksu Arıtma Tesisinde Seçilmiş Antibiyotiklerin Oluşumu, Akıbeti ve Giderimi

Year 2024, , 1005 - 1018, 20.08.2024
https://doi.org/10.35414/akufemubid.1287632

Abstract

Atıksu arıtma tesisleri (AAT'ler), antibiyotiklerin doğal ortama geçişi için en önemli noktasal kaynaklardan biri olarak kabul edilmektedir. Bu çalışmada, sırasıyla kinolon, sülfonamid ve makrolid gruplarına ait üç antibiyotik bileşik siprofloksasin (CIP), sülfametoksazol (SMX) ve azitromisinin (AZI) büyük ölçekli kentsel bir AAT'deki oluşumu, akıbeti ve uzaklaştırılması mevsimsel olarak araştırılmıştır. İncelenen antibiyotiklerin ham atıksulardaki oluşum konsantrasyonları yaz mevsiminde yaklaşık 0,26 ile 0,73 μg/L arasında bulunurken kış mevsiminde ise yaklaşık 0,41 ile 4,6 μg/L aralığında belirlenmiştir. Çalışılan ileri biyolojik AAT'nin ön arıtma kademesinde antibiyotikler için elde edilen giderim verimleri çok yüksek olmamak ile birlikte ön arıtma kademesinde en fazla arıtılan bileşik CIP (%23,8'e kadar) olarak belirlenmiştir. AAT'de araştırılan antibiyotiklerin toplam giderim verimleri esas olarak AAT'nin biyolojik arıtma kademesine bağlı olarak değişiklik göstermiştir. Aynı zamanda biyolojik arıtmada antibiyotikler için elde edilen giderim verimleri de mevsimlere bağlı olarak önemli ölçüde değişmiştir. İncelenen tüm antibiyotik bileşikler arasında AAT'de elde edilen toplam giderim verimi açısından mevsimlerden en az etkilenen bileşiğin AZI olduğu belirlenmiştir. Yıllık ortalama toplam giderim verimlerine göre AAT'de; SMX (%25,7), CIP (%71,3) ve AZI'nin (%89,2) sırasıyla düşük, orta ve yüksek oranda arıtıldığı belirlenmiştir. Bununla birlikte, ileri biyolojik AAT'nin toplam antibiyotiklerin tamamen giderilmesi için yetersiz olduğu belirlenmiştir.

Supporting Institution

Yok

Project Number

Yok

Thanks

Konya Su ve Kanalizasyon İdaresi'ne (KOSKİ) teşekkür ederiz.

References

  • Ajayi, A. O., Odeyemi, A. T., Akinjogunla, O. J., Adeyeye, A. B. and Ayo-ajayi, I., 2024. Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infection Ecology & Epidemiology, 14 (1), 2312953. https://doi.org/10.1080/20008686.2024.2312953
  • Anjali, R. and Shanthakumar, S., 2019. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. Journal of Environmental Management, 246, 51-62. https://doi.org/10.1016/j.jenvman.2019.05.090
  • Arun, S., Xin, L., Gaonkar, O., Neppolian, B., Zhang, G. and Chakraborty, P., 2022. Antibiotics in sewage treatment plants, receiving water bodies and groundwater of Chennai city and the suburb, South India: Occurrence, removal efficiencies, and risk assessment. Science of The Total Environment, 851, 158195. https://doi.org/10.1016/j.scitotenv.2022.158195
  • Beltrán de Heredia, I., Garbisu, C., Alkorta, I., Urra, J., González-Gaya, B. and Ruiz-Romera, E., 2023. Spatio-seasonal patterns of the impact of wastewater treatment plant effluents on antibiotic resistance in river sediments. Environmental Pollution, 319, 120883. https://doi.org/10.1016/j.envpol.2022.120883
  • Ben, W., Zhu, B., Yuan, X., Zhang, Y., Yang, M. and Qiang, Z., 2018. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Research, 130, 38-46. https://doi.org/10.1016/j.watres.2017.11.057
  • Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M.-N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F. and Martinez, J. L., 2015. Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 13 (5), 310-317. https://doi.org/10.1038/nrmicro3439
  • Bijlsma, L., Pitarch, E., Fonseca, E., Ibáñez, M., Botero, A. M., Claros, J., Pastor, L. and Hernández, F., 2021. Investigation of pharmaceuticals in a conventional wastewater treatment plant: Removal efficiency, seasonal variation and impact of a nearby hospital. Journal of Environmental Chemical Engineering, 9, 105548. https://doi.org/10.1016/j.jece.2021.105548
  • Blair, B., Nikolaus, A., Hedman, C., Klaper, R. and Grundl, T., 2015. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere, 134, 395-401. https://doi.org/10.1016/j.chemosphere.2015.04.078
  • Botero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín, L. P., Manrique-Losada, L., Torres-Palma, R., Moncayo-Lasso, A. and Hernández, F., 2018. ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater’. Science of The Total Environment, 642, 842-53. https://doi.org/10.1016/j.scitotenv.2018.06.088
  • Brown, A. K. and Wong, C. S., 2018. Distribution and fate of pharmaceuticals and their metabolite conjugates in a municipal wastewater treatment plant. Water Research, 144, 774-783. https://doi.org/10.1016/j.watres.2018.08.034
  • Cha, J. and Carlson, K. H., 2019. Biodegradation of veterinary antibiotics in lagoon waters. Process Safety and Environmental Protection, 127, 306-13. https://doi.org/10.1016/j.psep.2019.04.009
  • Cui, D., Chen, Z., Cheng, X., Zheng, G., Sun, Y., Deng, H. and Li, W., 2021. Efficiency of sulfamethoxazole removal from wastewater using aerobic granular sludge: influence of environmental factors. Biodegradation, 32 (6), 663-676. https://doi.org/10.1007/s10532-021-09959-6
  • Dolu, T. and Nas, B., 2023a. Dissemination of nonsteroidal anti-inflammatory drugs (NSAIDs) and metabolites from wastewater treatment plant to soils and agricultural crops via real-scale different agronomic practices. Environmental Research, 227, 115731. https://doi.org/10.1016/j.envres.2023.115731
  • Dolu, T. and Nas, B., 2023b. Full-scale anaerobic digestion of sewage sludges: Fate evaluation of pharmaceuticals and main metabolites. Journal of Water Process Engineering, 51, 103366. https://doi.org/10.1016/j.jwpe.2022.103366
  • Gao, L., Shi, Y., Li, W., Niu, H., Liu, J. and Cai, Y., 2012a. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere, 86, 665-71. https://doi.org/10.1016/j.chemosphere.2011.11.019
  • Gao, P., Ding, Y., Li, H. and Xagoraraki, I., 2012b. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes. Chemosphere, 88, 17-24. https://doi.org/10.1016/j.chemosphere.2012.02.017
  • Gao, Y.-X., Li, X., Fan, X.-Y., Zhao, J.-R. and Zhang, Z.-X., 2022. Wastewater treatment plants as reservoirs and sources for antibiotic resistance genes: A review on occurrence, transmission and removal. Journal of Water Process Engineering, 46, 102539. https://doi.org/10.1016/j.jwpe.2021.102539
  • Golovko, O., Kumar, V., Fedorova, G., Randak, T. and Grabic, R., 2014. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere, 111, 418-26. https://doi.org/10.1016/j.chemosphere.2014.03.132
  • Golovko, O., Örn, S., Sörengård, M., Frieberg, K., Nassazzi, W., Lai, F. Y. and Ahrens, L., 2021. Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Science of The Total Environment, 754, 142122. https://doi.org/10.1016/j.scitotenv.2020.142122
  • Göbel, A., McArdell, C. S., Joss, A., Siegrist, H. and Giger, W., 2007. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of The Total Environment, 372, 361-71. https://doi.org/10.1016/j.scitotenv.2006.07.039
  • Gruchlik, Y., Linge, K. and Joll, C., 2018. Removal of organic micropollutants in waste stabilisation ponds: A review. Journal of Environmental Management, 206, 202-214. https://doi.org/10.1016/j.jenvman.2017.10.020
  • Guerra, P., Kim, M., Shah, A., Alaee, M. and Smyth, S. A., 2014. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Science of The Total Environment, 473-474, 235-43. https://doi.org/10.1016/j.scitotenv.2013.12.008
  • Guo, X., Pang, W., Dou, C. and Yin, D., 2017, Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors. Chemosphere, 175, 21-27. https://doi.org/10.1016/j.chemosphere.2017.01.134
  • Hom-Diaz, A., Norvill, Z. N., Blánquez, P., Vicent, T. and Guieysse, B., 2017. Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds. Chemosphere, 180, 33-41. https://doi.org/10.1016/j.chemosphere.2017.03.125
  • Inyinbor, A. A., Bello, O. S., Fadiji, A. E. and Inyinbor, H. E., 2018. Threats from antibiotics: A serious environmental concern. Journal of Environmental Chemical Engineering, 6, 784-93. https://doi.org/10.1016/j.jece.2017.12.056
  • Jia, J., Cheng, M., Xue, X., Guan, Y. and Wang, Z., 2020. Characterization of tetracycline effects on microbial community, antibiotic resistance genes and antibiotic resistance of Aeromonas spp. in gut of goldfish Carassius auratus Linnaeus. Ecotoxicology and Environmental Safety, 191, 110182. https://doi.org/10.1016/j.ecoenv.2020.110182
  • Jiang, X., Zhu, Y., Liu, L., Fan, X., Bao, Y., Deng, S., Cui, Y., Cagnetta, G., Huang, J. and Yu, G., 2021. Occurrence and variations of pharmaceuticals and personal-care products in rural water bodies: A case study of the Taige Canal (2018–2019). Science of The Total Environment, 762, 143138. https://doi.org/10.1016/j.scitotenv.2020.143138
  • Joss, A., Zabczynski, S., Göbel, A., Hoffmann, B., Löffler, D., McArdell, C. S., Ternes, T. A., Thomsen, A. and Siegrist, H., 2006. Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research, 40 (8), 1686-1696. https://doi.org/10.1016/j.watres.2006.02.014
  • K'Oreje, K. O., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H. and Demeestere, K., 2016. Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere, 149, 238-44. https://doi.org/10.1016/j.chemosphere.2016.01.095
  • Khasawneh, O. F. S. and Palaniandy, P., 2021. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Safety and Environmental Protection, 150, 532-56. https://doi.org/10.1016/j.psep.2021.04.045
  • Klein, E. Y., Van Boeckel, T. P., Martinez, E. M., Pant, S., Gandra, S., Levin, S. A., Goossens, H. and Laxminarayan, R., 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences, 115 (15), E3463-E3470. https://doi.org/10.1073/pnas.1717295115
  • Kumar, A. and Pal, D., 2018. Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. Journal of Environmental Chemical Engineering, 6, 52-58. https://doi.org/10.1016/j.jece.2017.11.059
  • Kumar, M., Ngasepam, J., Dhangar, K., Mahlknecht, J. and Manna, S., 2022. Critical review on negative emerging contaminant removal efficiency of wastewater treatment systems: Concept, consistency and consequences. Bioresource Technology, 352, 127054. https://doi.org/10.1016/j.biortech.2022.127054
  • Kümmerer, K., 2009. Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75, 417-34. https://doi.org/10.1016/j.chemosphere.2008.11.086
  • Li, B. and Zhang, T., 2010. Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process. Environmental Science & Technology, 44, 3468-73. https://doi.org/10.1021/es903490h
  • Li, S., Zhang, R., Hu, J., Shi, W., Kuang, Y., Guo, X. and Sun, W., 2019. Occurrence and removal of antibiotics and antibiotic resistance genes in natural and constructed riverine wetlands in Beijing, China. Science of The Total Environment, 664, 546-53. https://doi.org/10.1016/j.scitotenv.2019.02.043
  • Li, S., Ondon, B. S., Ho, S.-H., Jiang, J. and Li, F., 2022. Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies. Science of The Total Environment, 838, 156544. https://doi.org/10.1016/j.scitotenv.2022.156544
  • Lorenzo, P., Adriana, A., Jessica, S., Carles, B., Marinella, F., Marta, L., Luis, B. J. and Pierre, S., 2018. Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. Chemosphere, 206, 70-82. https://doi.org/10.1016/j.chemosphere.2018.04.163
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S. and Wang, X. C., 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment, 473-474, 619-41. https://doi.org/10.1016/j.scitotenv.2013.12.065
  • Martín, J., Camacho-Muñoz, D., Santos, J. L., Aparicio, I. and Alonso, E., 2012. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. Journal of Hazardous Materials, 239-240, 40-47. https://doi.org/10.1016/j.jhazmat.2012.04.068
  • Matamoros, V., Gutiérrez, R., Ferrer, I., García, J. and Bayona, J. M., 2015. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. Journal of Hazardous Materials, 288, 34-42. https://doi.org/10.1016/j.jhazmat.2015.02.002
  • McFarland, J. W., Berger, C. M., Froshauer, S. A., Hayashi, S. F., Hecker, S. J., Jaynes, B. H., Jefson, M. R., Kamicker, B. J., Lipinski, C. A., Lundy, K. M., Reese, C. P. and Vu, C. B., 1997. Quantitative Structure−Activity Relationships among Macrolide Antibacterial Agents:  In Vitro and in Vivo Potency against Pasteurella multocida. Journal of Medicinal Chemistry, 40, 1340-46. https://doi.org/10.1021/jm960436i
  • Meek, R. W., Vyas, H. and Piddock, L. J. V., 2015. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?. PLOS Biology, 13, e1002266. https://doi.org/10.1371/journal.pbio.1002266
  • Mirzaei, R., Yunesian, M., Nasseri, S., Gholami, M., Jalilzadeh, E., Shoeibi, S. and Mesdaghinia, A., 2018. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Science of The Total Environment, 619-620, 446-59. https://doi.org/10.1016/j.scitotenv.2017.07.272
  • Mirzaie, F., Teymori, F., Shahcheragh, S., Dobaradaran, S., Arfaeinia, H., Kafaei, R., Sahebi, S., Farjadfard, S. and Ramavandi, B., 2022. Occurrence and distribution of azithromycin in wastewater treatment plants, seawater, and sediments of the northern part of the Persian Gulf around Bushehr port: A comparison with Pre-COVID 19 pandemic. Chemosphere, 307, 135996. https://doi.org/10.1016/j.chemosphere.2022.135996
  • Mohapatra, S., Huang, C.-H., Mukherji, S. and Padhye, L. P., 2016. Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere, 159, 526-35. https://doi.org/10.1016/j.chemosphere.2016.06.047
  • Mostafa, A., Shaaban, H., Alqarni, A., Al-Ansari, R., Alrashidi, A., Al-Sultan, F., Alsulaiman, M., Alsaif, F. and Aga, O., 2023. Multi-class determination of pharmaceuticals as emerging contaminants in wastewater from Eastern Province, Saudi Arabia using eco-friendly SPE-UHPLC-MS/MS: Occurrence, removal and environmental risk assessment. Microchemical Journal, 187, 108453. https://doi.org/10.1016/j.microc.2023.108453
  • Nas, B., Dolu, T. and Koyuncu, S., 2021a. Behavior and Removal of Ciprofloxacin and Sulfamethoxazole Antibiotics in Three Different Types of Full-Scale Wastewater Treatment Plants: A Comparative Study. Water, Air, & Soil Pollution, 232, 127. https://doi.org/10.1007/s11270-021-05067-6
  • Nas, B., Dolu, T., Argun, M. E., Yel, E., Ateş, H. and Koyuncu, S., 2021b. Comparison of advanced biological treatment and nature-based solutions for the treatment of pharmaceutically active compounds (PhACs): A comprehensive study for wastewater and sewage sludge. Science of The Total Environment, 779, 146344. https://doi.org/10.1016/j.scitotenv.2021.146344
  • Nas, B., Dolu, T., Ateş, H., Argun, M. and Yel, E., 2017. Treatment alternatives for micropollutant removal in wastewater. Selçuk University, Journal of Engineering, Science and Technology, 5, 133–143. https://doi.org/10.15317/Scitech.2017.77
  • Neyestani, M., Dickenson, E., McLain, J., Robleto, E., Rock, C. and Gerrity, D., 2017. Impacts of solids retention time on trace organic compound attenuation and bacterial resistance to trimethoprim and sulfamethoxazole. Chemosphere, 182, 149-158. https://doi.org/10.1016/j.chemosphere.2017.04.121
  • Nieto-Juárez, J. I., Torres-Palma, R. A., Botero-Coy, A. M. and Hernández, F., 2021. Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environment International, 155, 106674. https://doi.org/10.1016/j.envint.2021.106674
  • Oberoi, A. S., Jia, Y., Zhang, H., Khanal, S. K. and Lu, H., 2019. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. Environmental Science & Technology, 53 (13), 7234-7264. https://doi.org/10.1021/acs.est.9b01131
  • Okuda, T., Yamashita, N., Tanaka, H., Matsukawa, H. and Tanabe, K., 2009. Development of extraction method of pharmaceuticals and their occurrences found in Japanese wastewater treatment plants. Environment International, 35, 815-20. https://doi.org/10.1016/j.envint.2009.01.006
  • Olicón-Hernández, D. R., González-López, J. and Aranda, E., 2017. Overview on the Biochemical Potential of Filamentous Fungi to Degrade Pharmaceutical Compounds. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01792
  • Osińska, A., Korzeniewska, E., Harnisz, M., Felis, E., Bajkacz, S., Jachimowicz, P., Niestępski, S. and Konopka, I., 2020. Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Journal of Hazardous Materials, 381, 121221. https://doi.org/10.1016/j.jhazmat.2019.121221
  • Pan, L.-j., Li, J., Li, C.-x., Tang, X.-d., Yu, G.-w. and Wang, Y., 2018. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. Journal of Hazardous Materials, 343, 59-67. https://doi.org/10.1016/j.jhazmat.2017.09.009
  • Phonsiri, V., Choi, S., Nguyen, C., Tsai, Y.-L., Coss, R. and Kurwadkar, S., 2019. Monitoring occurrence and removal of selected pharmaceuticals in two different wastewater treatment plants. SN Applied Sciences, 1, 798. https://doi.org/10.1007/s42452-019-0774-z
  • Pugajeva, I., Rusko, J., Perkons, I., Lundanes, E. and Bartkevics, V., 2017. Determination of pharmaceutical residues in wastewater using high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 133, 64-74. https://doi.org/10.1016/j.jpba.2016.11.008
  • Sabri, N. A., van Holst, S., Schmitt, H., van der Zaan, B. M., Gerritsen, H. W., Rijnaarts, H. H. M. and Langenhoff, A. A. M., 2020. Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. Science of The Total Environment, 741, 140199. https://doi.org/10.1016/j.scitotenv.2020.140199
  • Senta, I., Kostanjevecki, P., Krizman-Matasic, I., Terzic, S. and Ahel, M., 2019. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and transformation products. Environmental Science & Technology, 53 (13), 7463-7472. https://doi.org/10.1021/acs.est.9b01420
  • Shahmahdi, N., Dehghanzadeh, R., Aslani, H. and Bakht Shokouhi, S., 2020. Performance evaluation of waste iron shavings (Fe0) for catalytic ozonation in removal of sulfamethoxazole from municipal wastewater treatment plant effluent in a batch mode pilot plant. Chemical Engineering Journal, 383, 123093. https://doi.org/10.1016/j.cej.2019.123093
  • Sim, W.-J., Lee, J.-W., Lee, E.-S., Shin, S.-K., Hwang, S.-R. and Oh, J.-E., 2011. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82, 179-86. https://doi.org/10.1016/j.chemosphere.2010.10.026
  • Song, Z., Zhang, X., Ngo, H. H., Guo, W., Wen, H. and Li, C., 2019. Occurrence, fate and health risk assessment of 10 common antibiotics in two drinking water plants with different treatment processes. Science of The Total Environment, 674, 316-26. https://doi.org/10.1016/j.scitotenv.2019.04.093
  • Spataro, F., Ademollo, N., Pescatore, T., Rauseo, J. and Patrolecco, L., 2019. Antibiotic residues and endocrine disrupting compounds in municipal wastewater treatment plants in Rome, Italy. Microchemical Journal, 148, 634-42. https://doi.org/10.1016/j.microc.2019.05.053
  • Sun, Q., Lv, M., Hu, A., Yang, X. and Yu, C.-P., 2014. Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China. Journal of Hazardous Materials, 277, 69-75. https://doi.org/10.1016/j.jhazmat.2013.11.056
  • Tran, N. H., Chen, H., Reinhard, M., Mao, F. and Gin, K. Y.-H., 2016. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Research, 104, 461-472. https://doi.org/10.1016/j.watres.2016.08.040
  • Urase, T., Kagawa, C. and Kikuta, T., 2005. Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors. Desalination, 178 (1), 107-113. https://doi.org/10.1016/j.desal.2004.11.031
  • Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S. and Laxminarayan, R., 2019. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365 (6459), eaaw1944. https://doi.org/10.1126/science.aaw1944
  • Verlicchi, P., Al Aukidy, M. and Zambello, E., 2012. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Science of The Total Environment, 429, 123-55. https://doi.org/10.1016/j.scitotenv.2012.04.028
  • Verlicchi, P. and Zambello, E., 2015. Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil — A critical review. Science of The Total Environment, 538, 750-67. https://doi.org/10.1016/j.scitotenv.2015.08.108
  • Vermillion Maier, M. L. and Tjeerdema, R. S., 2018. Azithromycin sorption and biodegradation in a simulated California river system. Chemosphere, 190, 471-80. https://doi.org/10.1016/j.chemosphere.2017.10.008
  • Vieno, N., Tuhkanen, T. and Kronberg, L., 2007. Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Research, 41 (5), 1001-1012. https://doi.org/10.1016/j.watres.2006.12.017
  • Wang, B., Xu, Z. and Dong, B., 2024. Occurrence, fate, and ecological risk of antibiotics in wastewater treatment plants in China: A review. Journal of Hazardous Materials, 469, 133925. https://doi.org/10.1016/j.jhazmat.2024.133925
  • Wang, J., Chu, L., Wojnárovits, L. and Takács, E., 2020. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Science of The Total Environment, 744, 140997. https://doi.org/10.1016/j.scitotenv.2020.140997
  • Wu, C., Spongberg, A. L. and Witter, J. D., 2009. Sorption and biodegradation of selected antibiotics in biosolids. Journal of Environmental Science and Health, Part A, 44, 454-61. https://doi.org/10.1080/10934520902719779 Wu, M.-H., Que, C.-J., Xu, G., Sun, Y.-F., Ma, J., Xu, H., Sun, R. and Tang, L., 2016. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicology and Environmental Safety, 132, 132-39. https://doi.org/10.1016/j.ecoenv.2016.06.006
  • Yang, S.-F., Lin, C.-F., Lin, A. Y.-C. and Hong, P.-K. A., 2011. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions. Water Research, 45 (11), 3389-3397. https://doi.org/10.1016/j.watres.2011.03.052
  • Yang, Y., Ji, Y., Gao, Y., Lin, Z., Lin, Y., Lu, Y. and Zhang, L., 2022. Antibiotics and antimycotics in waste water treatment plants: Concentrations, removal efficiency, spatial and temporal variations, prediction, and ecological risk assessment. Environmental Research, 215, 114135. https://doi.org/10.1016/j.envres.2022.114135
  • Yasojima, M., Nakada, N., Komori, K., Suzuki, Y. and Tanaka, H., 2006. Occurrence of levofloxacin, clarithromycin and azithromycin in wastewater treatment plant in Japan. Water Science and Technology, 53, 227-33. https://doi.org/10.2166/wst.2006.357
  • Yi, K., Wang, D., QiYang, Li, X., Chen, H., Sun, J., An, H., Wang, L., Deng, Y., Liu, J. and Zeng, G., 2017. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Science of The Total Environment, 605-606, 368-375. https://doi.org/10.1016/j.scitotenv.2017.06.215
  • Younes, H. A., Mahmoud, H. M., Abdelrahman, M. M. and Nassar, H. F., 2019. Seasonal occurrence, removal efficiency and associated ecological risk assessment of three antibiotics in a municipal wastewater treatment plant in Egypt. Environmental Nanotechnology, Monitoring & Management, 12, 100239. https://doi.org/10.1016/j.enmm.2019.100239
  • Yu, T.-H., Lin, A. Y.-C., Panchangam, S. C., Hong, P.-K. A., Yang, P.-Y. and Lin, C.-F., 2011. Biodegradation and bio-sorption of antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process. Chemosphere, 84, 1216-22. https://doi.org/10.1016/j.chemosphere.2011.05.045
  • Zhang, T. and Li, B., 2011. Occurrence, Transformation, and Fate of Antibiotics in Municipal Wastewater Treatment Plants. Critical Reviews in Environmental Science and Technology, 41 (11), 951-998. https://doi.org/10.1080/10643380903392692
  • Zhang, Y., Geng, J., Ma, H., Ren, H., Xu, K. and Ding, L., 2016. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure. Science of The Total Environment, 571, 479-486. https://doi.org/10.1016/j.scitotenv.2016.07.014
  • Zhang, X., Zhao, H., Du, J., Qu, Y., Shen, C., Tan, F., Chen, J. and Quan, X., 2017. Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China. Environmental Science and Pollution Research, 24 (19), 16478-16487. https://doi.org/10.1007/s11356-017-9296-7
  • Zhang, H., Du, M., Jiang, H., Zhang, D., Lin, L., Ye, H. and Zhang, X., 2015. Occurrence, seasonal variation and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China. Environmental Science: Processes & Impacts, 17 (1), 225-234. https://doi.org/10.1039/C4EM00457D
  • Zhang, H., Zou, H., Zhao, L. and Li, X., 2023. Seasonal distribution and dynamic evolution of antibiotics and evaluation of their resistance selection potential and ecotoxicological risk at a wastewater treatment plant in Jinan, China. Environmental Science and Pollution Research, 30 (15), 44505-44517. https://doi.org/10.1007/s11356-023-25202-6
  • Zhang, L., Zhu, Z., Zhao, M., He, J., Zhang, X., Hao, F. and Du, P., 2023. Occurrence, removal, emission and environment risk of 32 antibiotics and metabolites in wastewater treatment plants in Wuhu, China. Science of The Total Environment, 899, 165681. https://doi.org/10.1016/j.scitotenv.2023.165681
  • Zheng, W., Wen, X., Zhang, B. and Qiu, Y., 2019. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Science of The Total Environment, 646, 1293-1303. https://doi.org/10.1016/j.scitotenv.2018.07.400
  • Zhou, L.-J., Ying, G.-G., Liu, S., Zhao, J.-L., Yang, B., Chen, Z.-F. and Lai, H.-J., 2013. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Science of The Total Environment, 452-453, 365-376. https://doi.org/10.1016/j.scitotenv.2013.03.010
  • Zorita, S., Mårtensson, L. and Mathiasson, L., 2009. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of The Total Environment, 407, 2760-70. https://doi.org/10.1016/j.scitotenv.2008.12.030

Occurrence, Fate, and Removal of Selected Antibiotics in Advanced Biological Urban Wastewater Treatment Plant

Year 2024, , 1005 - 1018, 20.08.2024
https://doi.org/10.35414/akufemubid.1287632

Abstract

Wastewater treatment plants (WWTPs) are considered as one of the most important point sources for releasing antibiotics into the natural environment. In this study, the occurrence, fate, and removal of three antibiotics, ciprofloxacin (CIP), sulfamethoxazole (SMX), and azithromycin (AZI), belong to quinolone, sulfonamide, and macrolide groups, respectively were investigated seasonally in a large-scale urban WWTP. While the occurrence concentrations of the investigated antibiotics in raw wastewater were found between about 0.26 and 0.73 μg/L in the summer season, it was determined in the range of approximately 0.41 and 4.6 μg/L in the winter season. Although the removal efficiencies obtained for antibiotics in the pre-treatment stage of the studied advanced biological WWTP were not very high, the most treated compound in the pre-treatment stage was determined as CIP (up to 23.8%). Total removal efficiencies of the investigated antibiotics in the WWTP varied mainly based on the biological treatment stage of the WWTP. At the same time, removal efficiencies of the antibiotics obtained in the biological treatment also changed considerably depending on the seasons. Among all the investigated antibiotic compounds, it was determined that AZI was the compound that was least affected by the seasons in terms of the total removal efficiency obtained in WWTP. According to the annual average total removal efficiencies, it was determined that SMX (25.7%), CIP (71.3%), and AZI (89.2%) were treated poorly, moderately, and highly in WWTP, respectively. However, advanced biological WWTP was determined to be insufficient for the complete removal of total antibiotics.

Project Number

Yok

References

  • Ajayi, A. O., Odeyemi, A. T., Akinjogunla, O. J., Adeyeye, A. B. and Ayo-ajayi, I., 2024. Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infection Ecology & Epidemiology, 14 (1), 2312953. https://doi.org/10.1080/20008686.2024.2312953
  • Anjali, R. and Shanthakumar, S., 2019. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. Journal of Environmental Management, 246, 51-62. https://doi.org/10.1016/j.jenvman.2019.05.090
  • Arun, S., Xin, L., Gaonkar, O., Neppolian, B., Zhang, G. and Chakraborty, P., 2022. Antibiotics in sewage treatment plants, receiving water bodies and groundwater of Chennai city and the suburb, South India: Occurrence, removal efficiencies, and risk assessment. Science of The Total Environment, 851, 158195. https://doi.org/10.1016/j.scitotenv.2022.158195
  • Beltrán de Heredia, I., Garbisu, C., Alkorta, I., Urra, J., González-Gaya, B. and Ruiz-Romera, E., 2023. Spatio-seasonal patterns of the impact of wastewater treatment plant effluents on antibiotic resistance in river sediments. Environmental Pollution, 319, 120883. https://doi.org/10.1016/j.envpol.2022.120883
  • Ben, W., Zhu, B., Yuan, X., Zhang, Y., Yang, M. and Qiang, Z., 2018. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Research, 130, 38-46. https://doi.org/10.1016/j.watres.2017.11.057
  • Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M.-N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F. and Martinez, J. L., 2015. Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 13 (5), 310-317. https://doi.org/10.1038/nrmicro3439
  • Bijlsma, L., Pitarch, E., Fonseca, E., Ibáñez, M., Botero, A. M., Claros, J., Pastor, L. and Hernández, F., 2021. Investigation of pharmaceuticals in a conventional wastewater treatment plant: Removal efficiency, seasonal variation and impact of a nearby hospital. Journal of Environmental Chemical Engineering, 9, 105548. https://doi.org/10.1016/j.jece.2021.105548
  • Blair, B., Nikolaus, A., Hedman, C., Klaper, R. and Grundl, T., 2015. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere, 134, 395-401. https://doi.org/10.1016/j.chemosphere.2015.04.078
  • Botero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín, L. P., Manrique-Losada, L., Torres-Palma, R., Moncayo-Lasso, A. and Hernández, F., 2018. ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater’. Science of The Total Environment, 642, 842-53. https://doi.org/10.1016/j.scitotenv.2018.06.088
  • Brown, A. K. and Wong, C. S., 2018. Distribution and fate of pharmaceuticals and their metabolite conjugates in a municipal wastewater treatment plant. Water Research, 144, 774-783. https://doi.org/10.1016/j.watres.2018.08.034
  • Cha, J. and Carlson, K. H., 2019. Biodegradation of veterinary antibiotics in lagoon waters. Process Safety and Environmental Protection, 127, 306-13. https://doi.org/10.1016/j.psep.2019.04.009
  • Cui, D., Chen, Z., Cheng, X., Zheng, G., Sun, Y., Deng, H. and Li, W., 2021. Efficiency of sulfamethoxazole removal from wastewater using aerobic granular sludge: influence of environmental factors. Biodegradation, 32 (6), 663-676. https://doi.org/10.1007/s10532-021-09959-6
  • Dolu, T. and Nas, B., 2023a. Dissemination of nonsteroidal anti-inflammatory drugs (NSAIDs) and metabolites from wastewater treatment plant to soils and agricultural crops via real-scale different agronomic practices. Environmental Research, 227, 115731. https://doi.org/10.1016/j.envres.2023.115731
  • Dolu, T. and Nas, B., 2023b. Full-scale anaerobic digestion of sewage sludges: Fate evaluation of pharmaceuticals and main metabolites. Journal of Water Process Engineering, 51, 103366. https://doi.org/10.1016/j.jwpe.2022.103366
  • Gao, L., Shi, Y., Li, W., Niu, H., Liu, J. and Cai, Y., 2012a. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere, 86, 665-71. https://doi.org/10.1016/j.chemosphere.2011.11.019
  • Gao, P., Ding, Y., Li, H. and Xagoraraki, I., 2012b. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes. Chemosphere, 88, 17-24. https://doi.org/10.1016/j.chemosphere.2012.02.017
  • Gao, Y.-X., Li, X., Fan, X.-Y., Zhao, J.-R. and Zhang, Z.-X., 2022. Wastewater treatment plants as reservoirs and sources for antibiotic resistance genes: A review on occurrence, transmission and removal. Journal of Water Process Engineering, 46, 102539. https://doi.org/10.1016/j.jwpe.2021.102539
  • Golovko, O., Kumar, V., Fedorova, G., Randak, T. and Grabic, R., 2014. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere, 111, 418-26. https://doi.org/10.1016/j.chemosphere.2014.03.132
  • Golovko, O., Örn, S., Sörengård, M., Frieberg, K., Nassazzi, W., Lai, F. Y. and Ahrens, L., 2021. Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Science of The Total Environment, 754, 142122. https://doi.org/10.1016/j.scitotenv.2020.142122
  • Göbel, A., McArdell, C. S., Joss, A., Siegrist, H. and Giger, W., 2007. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of The Total Environment, 372, 361-71. https://doi.org/10.1016/j.scitotenv.2006.07.039
  • Gruchlik, Y., Linge, K. and Joll, C., 2018. Removal of organic micropollutants in waste stabilisation ponds: A review. Journal of Environmental Management, 206, 202-214. https://doi.org/10.1016/j.jenvman.2017.10.020
  • Guerra, P., Kim, M., Shah, A., Alaee, M. and Smyth, S. A., 2014. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Science of The Total Environment, 473-474, 235-43. https://doi.org/10.1016/j.scitotenv.2013.12.008
  • Guo, X., Pang, W., Dou, C. and Yin, D., 2017, Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors. Chemosphere, 175, 21-27. https://doi.org/10.1016/j.chemosphere.2017.01.134
  • Hom-Diaz, A., Norvill, Z. N., Blánquez, P., Vicent, T. and Guieysse, B., 2017. Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds. Chemosphere, 180, 33-41. https://doi.org/10.1016/j.chemosphere.2017.03.125
  • Inyinbor, A. A., Bello, O. S., Fadiji, A. E. and Inyinbor, H. E., 2018. Threats from antibiotics: A serious environmental concern. Journal of Environmental Chemical Engineering, 6, 784-93. https://doi.org/10.1016/j.jece.2017.12.056
  • Jia, J., Cheng, M., Xue, X., Guan, Y. and Wang, Z., 2020. Characterization of tetracycline effects on microbial community, antibiotic resistance genes and antibiotic resistance of Aeromonas spp. in gut of goldfish Carassius auratus Linnaeus. Ecotoxicology and Environmental Safety, 191, 110182. https://doi.org/10.1016/j.ecoenv.2020.110182
  • Jiang, X., Zhu, Y., Liu, L., Fan, X., Bao, Y., Deng, S., Cui, Y., Cagnetta, G., Huang, J. and Yu, G., 2021. Occurrence and variations of pharmaceuticals and personal-care products in rural water bodies: A case study of the Taige Canal (2018–2019). Science of The Total Environment, 762, 143138. https://doi.org/10.1016/j.scitotenv.2020.143138
  • Joss, A., Zabczynski, S., Göbel, A., Hoffmann, B., Löffler, D., McArdell, C. S., Ternes, T. A., Thomsen, A. and Siegrist, H., 2006. Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research, 40 (8), 1686-1696. https://doi.org/10.1016/j.watres.2006.02.014
  • K'Oreje, K. O., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H. and Demeestere, K., 2016. Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere, 149, 238-44. https://doi.org/10.1016/j.chemosphere.2016.01.095
  • Khasawneh, O. F. S. and Palaniandy, P., 2021. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Safety and Environmental Protection, 150, 532-56. https://doi.org/10.1016/j.psep.2021.04.045
  • Klein, E. Y., Van Boeckel, T. P., Martinez, E. M., Pant, S., Gandra, S., Levin, S. A., Goossens, H. and Laxminarayan, R., 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences, 115 (15), E3463-E3470. https://doi.org/10.1073/pnas.1717295115
  • Kumar, A. and Pal, D., 2018. Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. Journal of Environmental Chemical Engineering, 6, 52-58. https://doi.org/10.1016/j.jece.2017.11.059
  • Kumar, M., Ngasepam, J., Dhangar, K., Mahlknecht, J. and Manna, S., 2022. Critical review on negative emerging contaminant removal efficiency of wastewater treatment systems: Concept, consistency and consequences. Bioresource Technology, 352, 127054. https://doi.org/10.1016/j.biortech.2022.127054
  • Kümmerer, K., 2009. Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75, 417-34. https://doi.org/10.1016/j.chemosphere.2008.11.086
  • Li, B. and Zhang, T., 2010. Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process. Environmental Science & Technology, 44, 3468-73. https://doi.org/10.1021/es903490h
  • Li, S., Zhang, R., Hu, J., Shi, W., Kuang, Y., Guo, X. and Sun, W., 2019. Occurrence and removal of antibiotics and antibiotic resistance genes in natural and constructed riverine wetlands in Beijing, China. Science of The Total Environment, 664, 546-53. https://doi.org/10.1016/j.scitotenv.2019.02.043
  • Li, S., Ondon, B. S., Ho, S.-H., Jiang, J. and Li, F., 2022. Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies. Science of The Total Environment, 838, 156544. https://doi.org/10.1016/j.scitotenv.2022.156544
  • Lorenzo, P., Adriana, A., Jessica, S., Carles, B., Marinella, F., Marta, L., Luis, B. J. and Pierre, S., 2018. Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. Chemosphere, 206, 70-82. https://doi.org/10.1016/j.chemosphere.2018.04.163
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S. and Wang, X. C., 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment, 473-474, 619-41. https://doi.org/10.1016/j.scitotenv.2013.12.065
  • Martín, J., Camacho-Muñoz, D., Santos, J. L., Aparicio, I. and Alonso, E., 2012. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. Journal of Hazardous Materials, 239-240, 40-47. https://doi.org/10.1016/j.jhazmat.2012.04.068
  • Matamoros, V., Gutiérrez, R., Ferrer, I., García, J. and Bayona, J. M., 2015. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. Journal of Hazardous Materials, 288, 34-42. https://doi.org/10.1016/j.jhazmat.2015.02.002
  • McFarland, J. W., Berger, C. M., Froshauer, S. A., Hayashi, S. F., Hecker, S. J., Jaynes, B. H., Jefson, M. R., Kamicker, B. J., Lipinski, C. A., Lundy, K. M., Reese, C. P. and Vu, C. B., 1997. Quantitative Structure−Activity Relationships among Macrolide Antibacterial Agents:  In Vitro and in Vivo Potency against Pasteurella multocida. Journal of Medicinal Chemistry, 40, 1340-46. https://doi.org/10.1021/jm960436i
  • Meek, R. W., Vyas, H. and Piddock, L. J. V., 2015. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?. PLOS Biology, 13, e1002266. https://doi.org/10.1371/journal.pbio.1002266
  • Mirzaei, R., Yunesian, M., Nasseri, S., Gholami, M., Jalilzadeh, E., Shoeibi, S. and Mesdaghinia, A., 2018. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Science of The Total Environment, 619-620, 446-59. https://doi.org/10.1016/j.scitotenv.2017.07.272
  • Mirzaie, F., Teymori, F., Shahcheragh, S., Dobaradaran, S., Arfaeinia, H., Kafaei, R., Sahebi, S., Farjadfard, S. and Ramavandi, B., 2022. Occurrence and distribution of azithromycin in wastewater treatment plants, seawater, and sediments of the northern part of the Persian Gulf around Bushehr port: A comparison with Pre-COVID 19 pandemic. Chemosphere, 307, 135996. https://doi.org/10.1016/j.chemosphere.2022.135996
  • Mohapatra, S., Huang, C.-H., Mukherji, S. and Padhye, L. P., 2016. Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere, 159, 526-35. https://doi.org/10.1016/j.chemosphere.2016.06.047
  • Mostafa, A., Shaaban, H., Alqarni, A., Al-Ansari, R., Alrashidi, A., Al-Sultan, F., Alsulaiman, M., Alsaif, F. and Aga, O., 2023. Multi-class determination of pharmaceuticals as emerging contaminants in wastewater from Eastern Province, Saudi Arabia using eco-friendly SPE-UHPLC-MS/MS: Occurrence, removal and environmental risk assessment. Microchemical Journal, 187, 108453. https://doi.org/10.1016/j.microc.2023.108453
  • Nas, B., Dolu, T. and Koyuncu, S., 2021a. Behavior and Removal of Ciprofloxacin and Sulfamethoxazole Antibiotics in Three Different Types of Full-Scale Wastewater Treatment Plants: A Comparative Study. Water, Air, & Soil Pollution, 232, 127. https://doi.org/10.1007/s11270-021-05067-6
  • Nas, B., Dolu, T., Argun, M. E., Yel, E., Ateş, H. and Koyuncu, S., 2021b. Comparison of advanced biological treatment and nature-based solutions for the treatment of pharmaceutically active compounds (PhACs): A comprehensive study for wastewater and sewage sludge. Science of The Total Environment, 779, 146344. https://doi.org/10.1016/j.scitotenv.2021.146344
  • Nas, B., Dolu, T., Ateş, H., Argun, M. and Yel, E., 2017. Treatment alternatives for micropollutant removal in wastewater. Selçuk University, Journal of Engineering, Science and Technology, 5, 133–143. https://doi.org/10.15317/Scitech.2017.77
  • Neyestani, M., Dickenson, E., McLain, J., Robleto, E., Rock, C. and Gerrity, D., 2017. Impacts of solids retention time on trace organic compound attenuation and bacterial resistance to trimethoprim and sulfamethoxazole. Chemosphere, 182, 149-158. https://doi.org/10.1016/j.chemosphere.2017.04.121
  • Nieto-Juárez, J. I., Torres-Palma, R. A., Botero-Coy, A. M. and Hernández, F., 2021. Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environment International, 155, 106674. https://doi.org/10.1016/j.envint.2021.106674
  • Oberoi, A. S., Jia, Y., Zhang, H., Khanal, S. K. and Lu, H., 2019. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. Environmental Science & Technology, 53 (13), 7234-7264. https://doi.org/10.1021/acs.est.9b01131
  • Okuda, T., Yamashita, N., Tanaka, H., Matsukawa, H. and Tanabe, K., 2009. Development of extraction method of pharmaceuticals and their occurrences found in Japanese wastewater treatment plants. Environment International, 35, 815-20. https://doi.org/10.1016/j.envint.2009.01.006
  • Olicón-Hernández, D. R., González-López, J. and Aranda, E., 2017. Overview on the Biochemical Potential of Filamentous Fungi to Degrade Pharmaceutical Compounds. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01792
  • Osińska, A., Korzeniewska, E., Harnisz, M., Felis, E., Bajkacz, S., Jachimowicz, P., Niestępski, S. and Konopka, I., 2020. Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Journal of Hazardous Materials, 381, 121221. https://doi.org/10.1016/j.jhazmat.2019.121221
  • Pan, L.-j., Li, J., Li, C.-x., Tang, X.-d., Yu, G.-w. and Wang, Y., 2018. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. Journal of Hazardous Materials, 343, 59-67. https://doi.org/10.1016/j.jhazmat.2017.09.009
  • Phonsiri, V., Choi, S., Nguyen, C., Tsai, Y.-L., Coss, R. and Kurwadkar, S., 2019. Monitoring occurrence and removal of selected pharmaceuticals in two different wastewater treatment plants. SN Applied Sciences, 1, 798. https://doi.org/10.1007/s42452-019-0774-z
  • Pugajeva, I., Rusko, J., Perkons, I., Lundanes, E. and Bartkevics, V., 2017. Determination of pharmaceutical residues in wastewater using high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 133, 64-74. https://doi.org/10.1016/j.jpba.2016.11.008
  • Sabri, N. A., van Holst, S., Schmitt, H., van der Zaan, B. M., Gerritsen, H. W., Rijnaarts, H. H. M. and Langenhoff, A. A. M., 2020. Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. Science of The Total Environment, 741, 140199. https://doi.org/10.1016/j.scitotenv.2020.140199
  • Senta, I., Kostanjevecki, P., Krizman-Matasic, I., Terzic, S. and Ahel, M., 2019. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and transformation products. Environmental Science & Technology, 53 (13), 7463-7472. https://doi.org/10.1021/acs.est.9b01420
  • Shahmahdi, N., Dehghanzadeh, R., Aslani, H. and Bakht Shokouhi, S., 2020. Performance evaluation of waste iron shavings (Fe0) for catalytic ozonation in removal of sulfamethoxazole from municipal wastewater treatment plant effluent in a batch mode pilot plant. Chemical Engineering Journal, 383, 123093. https://doi.org/10.1016/j.cej.2019.123093
  • Sim, W.-J., Lee, J.-W., Lee, E.-S., Shin, S.-K., Hwang, S.-R. and Oh, J.-E., 2011. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82, 179-86. https://doi.org/10.1016/j.chemosphere.2010.10.026
  • Song, Z., Zhang, X., Ngo, H. H., Guo, W., Wen, H. and Li, C., 2019. Occurrence, fate and health risk assessment of 10 common antibiotics in two drinking water plants with different treatment processes. Science of The Total Environment, 674, 316-26. https://doi.org/10.1016/j.scitotenv.2019.04.093
  • Spataro, F., Ademollo, N., Pescatore, T., Rauseo, J. and Patrolecco, L., 2019. Antibiotic residues and endocrine disrupting compounds in municipal wastewater treatment plants in Rome, Italy. Microchemical Journal, 148, 634-42. https://doi.org/10.1016/j.microc.2019.05.053
  • Sun, Q., Lv, M., Hu, A., Yang, X. and Yu, C.-P., 2014. Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China. Journal of Hazardous Materials, 277, 69-75. https://doi.org/10.1016/j.jhazmat.2013.11.056
  • Tran, N. H., Chen, H., Reinhard, M., Mao, F. and Gin, K. Y.-H., 2016. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Research, 104, 461-472. https://doi.org/10.1016/j.watres.2016.08.040
  • Urase, T., Kagawa, C. and Kikuta, T., 2005. Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors. Desalination, 178 (1), 107-113. https://doi.org/10.1016/j.desal.2004.11.031
  • Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S. and Laxminarayan, R., 2019. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365 (6459), eaaw1944. https://doi.org/10.1126/science.aaw1944
  • Verlicchi, P., Al Aukidy, M. and Zambello, E., 2012. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Science of The Total Environment, 429, 123-55. https://doi.org/10.1016/j.scitotenv.2012.04.028
  • Verlicchi, P. and Zambello, E., 2015. Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil — A critical review. Science of The Total Environment, 538, 750-67. https://doi.org/10.1016/j.scitotenv.2015.08.108
  • Vermillion Maier, M. L. and Tjeerdema, R. S., 2018. Azithromycin sorption and biodegradation in a simulated California river system. Chemosphere, 190, 471-80. https://doi.org/10.1016/j.chemosphere.2017.10.008
  • Vieno, N., Tuhkanen, T. and Kronberg, L., 2007. Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Research, 41 (5), 1001-1012. https://doi.org/10.1016/j.watres.2006.12.017
  • Wang, B., Xu, Z. and Dong, B., 2024. Occurrence, fate, and ecological risk of antibiotics in wastewater treatment plants in China: A review. Journal of Hazardous Materials, 469, 133925. https://doi.org/10.1016/j.jhazmat.2024.133925
  • Wang, J., Chu, L., Wojnárovits, L. and Takács, E., 2020. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Science of The Total Environment, 744, 140997. https://doi.org/10.1016/j.scitotenv.2020.140997
  • Wu, C., Spongberg, A. L. and Witter, J. D., 2009. Sorption and biodegradation of selected antibiotics in biosolids. Journal of Environmental Science and Health, Part A, 44, 454-61. https://doi.org/10.1080/10934520902719779 Wu, M.-H., Que, C.-J., Xu, G., Sun, Y.-F., Ma, J., Xu, H., Sun, R. and Tang, L., 2016. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicology and Environmental Safety, 132, 132-39. https://doi.org/10.1016/j.ecoenv.2016.06.006
  • Yang, S.-F., Lin, C.-F., Lin, A. Y.-C. and Hong, P.-K. A., 2011. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions. Water Research, 45 (11), 3389-3397. https://doi.org/10.1016/j.watres.2011.03.052
  • Yang, Y., Ji, Y., Gao, Y., Lin, Z., Lin, Y., Lu, Y. and Zhang, L., 2022. Antibiotics and antimycotics in waste water treatment plants: Concentrations, removal efficiency, spatial and temporal variations, prediction, and ecological risk assessment. Environmental Research, 215, 114135. https://doi.org/10.1016/j.envres.2022.114135
  • Yasojima, M., Nakada, N., Komori, K., Suzuki, Y. and Tanaka, H., 2006. Occurrence of levofloxacin, clarithromycin and azithromycin in wastewater treatment plant in Japan. Water Science and Technology, 53, 227-33. https://doi.org/10.2166/wst.2006.357
  • Yi, K., Wang, D., QiYang, Li, X., Chen, H., Sun, J., An, H., Wang, L., Deng, Y., Liu, J. and Zeng, G., 2017. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Science of The Total Environment, 605-606, 368-375. https://doi.org/10.1016/j.scitotenv.2017.06.215
  • Younes, H. A., Mahmoud, H. M., Abdelrahman, M. M. and Nassar, H. F., 2019. Seasonal occurrence, removal efficiency and associated ecological risk assessment of three antibiotics in a municipal wastewater treatment plant in Egypt. Environmental Nanotechnology, Monitoring & Management, 12, 100239. https://doi.org/10.1016/j.enmm.2019.100239
  • Yu, T.-H., Lin, A. Y.-C., Panchangam, S. C., Hong, P.-K. A., Yang, P.-Y. and Lin, C.-F., 2011. Biodegradation and bio-sorption of antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process. Chemosphere, 84, 1216-22. https://doi.org/10.1016/j.chemosphere.2011.05.045
  • Zhang, T. and Li, B., 2011. Occurrence, Transformation, and Fate of Antibiotics in Municipal Wastewater Treatment Plants. Critical Reviews in Environmental Science and Technology, 41 (11), 951-998. https://doi.org/10.1080/10643380903392692
  • Zhang, Y., Geng, J., Ma, H., Ren, H., Xu, K. and Ding, L., 2016. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure. Science of The Total Environment, 571, 479-486. https://doi.org/10.1016/j.scitotenv.2016.07.014
  • Zhang, X., Zhao, H., Du, J., Qu, Y., Shen, C., Tan, F., Chen, J. and Quan, X., 2017. Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China. Environmental Science and Pollution Research, 24 (19), 16478-16487. https://doi.org/10.1007/s11356-017-9296-7
  • Zhang, H., Du, M., Jiang, H., Zhang, D., Lin, L., Ye, H. and Zhang, X., 2015. Occurrence, seasonal variation and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China. Environmental Science: Processes & Impacts, 17 (1), 225-234. https://doi.org/10.1039/C4EM00457D
  • Zhang, H., Zou, H., Zhao, L. and Li, X., 2023. Seasonal distribution and dynamic evolution of antibiotics and evaluation of their resistance selection potential and ecotoxicological risk at a wastewater treatment plant in Jinan, China. Environmental Science and Pollution Research, 30 (15), 44505-44517. https://doi.org/10.1007/s11356-023-25202-6
  • Zhang, L., Zhu, Z., Zhao, M., He, J., Zhang, X., Hao, F. and Du, P., 2023. Occurrence, removal, emission and environment risk of 32 antibiotics and metabolites in wastewater treatment plants in Wuhu, China. Science of The Total Environment, 899, 165681. https://doi.org/10.1016/j.scitotenv.2023.165681
  • Zheng, W., Wen, X., Zhang, B. and Qiu, Y., 2019. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Science of The Total Environment, 646, 1293-1303. https://doi.org/10.1016/j.scitotenv.2018.07.400
  • Zhou, L.-J., Ying, G.-G., Liu, S., Zhao, J.-L., Yang, B., Chen, Z.-F. and Lai, H.-J., 2013. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Science of The Total Environment, 452-453, 365-376. https://doi.org/10.1016/j.scitotenv.2013.03.010
  • Zorita, S., Mårtensson, L. and Mathiasson, L., 2009. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of The Total Environment, 407, 2760-70. https://doi.org/10.1016/j.scitotenv.2008.12.030
There are 91 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Taylan Dolu 0000-0003-2331-1832

Bilgehan Nas 0000-0002-2942-8225

Project Number Yok
Early Pub Date July 23, 2024
Publication Date August 20, 2024
Submission Date April 25, 2023
Published in Issue Year 2024

Cite

APA Dolu, T., & Nas, B. (2024). Occurrence, Fate, and Removal of Selected Antibiotics in Advanced Biological Urban Wastewater Treatment Plant. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(4), 1005-1018. https://doi.org/10.35414/akufemubid.1287632
AMA Dolu T, Nas B. Occurrence, Fate, and Removal of Selected Antibiotics in Advanced Biological Urban Wastewater Treatment Plant. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2024;24(4):1005-1018. doi:10.35414/akufemubid.1287632
Chicago Dolu, Taylan, and Bilgehan Nas. “Occurrence, Fate, and Removal of Selected Antibiotics in Advanced Biological Urban Wastewater Treatment Plant”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 4 (August 2024): 1005-18. https://doi.org/10.35414/akufemubid.1287632.
EndNote Dolu T, Nas B (August 1, 2024) Occurrence, Fate, and Removal of Selected Antibiotics in Advanced Biological Urban Wastewater Treatment Plant. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 4 1005–1018.
IEEE T. Dolu and B. Nas, “Occurrence, Fate, and Removal of Selected Antibiotics in Advanced Biological Urban Wastewater Treatment Plant”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 4, pp. 1005–1018, 2024, doi: 10.35414/akufemubid.1287632.
ISNAD Dolu, Taylan - Nas, Bilgehan. “Occurrence, Fate, and Removal of Selected Antibiotics in Advanced Biological Urban Wastewater Treatment Plant”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/4 (August 2024), 1005-1018. https://doi.org/10.35414/akufemubid.1287632.
JAMA Dolu T, Nas B. Occurrence, Fate, and Removal of Selected Antibiotics in Advanced Biological Urban Wastewater Treatment Plant. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1005–1018.
MLA Dolu, Taylan and Bilgehan Nas. “Occurrence, Fate, and Removal of Selected Antibiotics in Advanced Biological Urban Wastewater Treatment Plant”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 4, 2024, pp. 1005-18, doi:10.35414/akufemubid.1287632.
Vancouver Dolu T, Nas B. Occurrence, Fate, and Removal of Selected Antibiotics in Advanced Biological Urban Wastewater Treatment Plant. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(4):1005-18.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.