Research Article
BibTex RIS Cite

Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters

Year 2023, , 1171 - 1179, 30.10.2023
https://doi.org/10.35414/akufemubid.1300086

Abstract

The solar radiation incident on the surface of photovoltaic (PV) panels, dependent on the inclination
angle, and the temperature of the panels are the most significant parameters affecting power
generation. These two parameters are necessary to accurately evaluate the electrical performance by
enabling the calculation of cell and module temperatures. In this study, the efficiencies and electrical
power behaviors of PV panels positioned towards the sun at a 37° inclination angle in Hakkari province
were examined under real solar radiation and ambient temperature values. In addition, the effect of
wind speed parameters was also considered, and the impact on panel efficiency and PV panel output
power was evaluated. When the results were evaluated, it was confirmed that the effect of wind
increases the efficiency of PV panels, resulting in an increasing in PV output power.

References

  • Akhsassi, M., El Fathi, A., Erraissi, N., Aarich, N., Bennouna, A., Raoufi, M. and Outzourhit, A., 2018. Experimental investigation and modeling of the thermal behavior of a solar PV module. Solar Energy Materials and Solar Cells, 180, 271-279.
  • Al-Ghezi, M. K., Ahmed, R. T., Chaichan, M. T., 2022. The Influence of Temperature and Irradiance on Performance of the photovoltaic panel in the Middle of Iraq. International Journal of Renewable Energy Development, 11(2), 501.
  • Alsayed, M., Cacciato, M., Scarcella, G. and Scelba, G., 2013. Multicriteria optimal sizing of photovoltaic-wind turbine grid connected systems. IEEE Transactions on energy conversion, 28(2), 370-379.
  • Aly, S. P., Ahzi, S. and Barth, N., 2019. Effect of physical and environmental factors on the performance of a photovoltaic panel. Solar Energy Materials and Solar Cells, 200, 109948.
  • Aoun, N., 2021. Outdoor testing of free standing PV module temperature under desert climate: a comparative study. International Journal of Ambient Energy, 42(13), 1484-1491.
  • Aoun, N., 2022. Methodology for predicting the PV module temperature based on actual and estimated weather data. Energy Conversion and Management: X, 14, 100182.
  • Ayaz, R., 2012. Modeling of the different PV technologies using real environmental datum and determination of optimum tilt angles for Istanbul. MSc. Thesis, Yildiz Technical University Graduate School Of Natural And Applied Science, Istanbul, 72.
  • Barroso, J. S., Barth, N., Correia, J. P. M., Ahzi, S. and Khaleel, M. A., 2016. A computational analysis of coupled thermal and electrical behavior of PV panels. Solar Energy Materials and Solar Cells, 148, 73-86.
  • Deutsche Gesellschaft für Sonnenenergie (DGS), 2013. Planning and installing photovoltaic systems: a guide for installers, architects and engineers. Routledge.
  • Durusu, A., 2016. A new approach for photovoltaic solar plant design and site optimization. PhD. Thesis, Yildiz Technical University Graduate School Of Natural And Applied Science, Istanbul, 136.
  • Ebhota, W. S., & Tabakov, P. Y., 2023. Influence of photovoltaic cell technologies and elevated temperature on photovoltaic system performance. Ain Shams Engineering Journal, 14(7), 101984.
  • Gokmen, N., Hu, W., Hou, P., Chen, Z., Sera, D. and Spataru, S., 2016. Investigation of wind speed cooling effect on PV panels in windy locations. Renewable Energy, 90, 283-290.
  • Ibrahim, H. and Anani, N., 2017. Variations of PV module parameters with irradiance and temperature. Energy Procedia, 134, 276-285.
  • Kaldellis, J. K., Kapsali, M. and Kavadias, K. A., 2014. Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renewable Energy, 66, 612-624.
  • Kaplani, E. and Kaplanis, S., 2014. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Solar Energy, 107, 443-460.
  • Kazem, H. A., Al-Waeli, A. H., Chaichan, M. T., Al-Waeli, K. H., Al-Aasam, A. B., & Sopian, K., 2020. Evaluation and comparison of different flow configurations PVT systems in Oman: A numerical and experimental investigation. Solar Energy, 208, 58-88.
  • Khatib, T., Mohamed, A. and Sopian, K., 2012. A review of solar energy modeling techniques. Renewable and Sustainable Energy Reviews, 16(5), 2864-2869.
  • King, D. L., Kratochvil, J. A. and Boyson, W. E., 2004. Photovoltaic array performance model. United States Department of Energy, 8, 1-19.
  • Koehl, M., Heck, M., Wiesmeier, S. and Wirth, J., 2011. Modeling of the nominal operating cell temperature based on outdoor weathering. Solar Energy Materials and Solar Cells, 95(7), 1638-1646.
  • Malik, P., Chandel, S. S., 2021. A new integrated single‐diode solar cell model for photovoltaic power prediction with experimental validation under real outdoor conditions. International Journal of Energy Research, 45(1), 759-771.
  • Mustafa, R. J., Gomaa, M. R., Al-Dhaifallah, M., Rezk, H., 2020. Environmental impacts on the performance of solar photovoltaic systems. Sustainability, 12(2), 608.
  • Obiwulu, A. U., Erusiafe, N., Olopade, M. A. and Nwokolo, S. C., 2020. Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance. Renewable Energy, 154, 404-431.
  • Skoplaki, E., Boudouvis, A. G.and Palyvos, J. A., 2008. A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar energy materials and solar cells, 92(11), 1393-1402.
  • Skoplaki, E. and Palyvos, J. A., 2009. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar energy, 83(5), 614-624.
  • Sun, C., Zou, Y., Qin, C., Zhang, B., Wu, X., 2022. Temperature effect of photovoltaic cells: a review. Advanced Composites and Hybrid Materials, 5(4), 2675-2699. Yigit and Arslanoğlu, N., 2021. Anlık işinim şiddeti ve çevresel faktörlere bağlı optimum PV panel açısı, verim, güç üretiminin incelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(1), 301-314.
  • Yolcan, O. O., Kose, R., 2023. Photovoltaic module cell temperature estimation: Developing a novel expression. Solar Energy, 249, 1-11.

Anlık Güneş Işınımı ve Meteorolojik Parametrelere Bağlı Olarak Fotovoltaik Panel Güç Üretiminin Değerlendirilmesi

Year 2023, , 1171 - 1179, 30.10.2023
https://doi.org/10.35414/akufemubid.1300086

Abstract

Fotovoltaik (PV) panel yüzeyine eğim açısına bağlı olarak düşen güneş ışınımı ve panellerin sıcaklığı güç
üretimini etkileyen en önemli parametrelerdir. Bu iki parametre hücre ve modül sıcaklık
hesaplamalarının yapılmasını sağlayarak elektrik performansını doğru bir şekilde değerlendirmek için
gereklidir. Bu çalışmada, Hakkâri ilinde 37° eğim açısı ile güneşe doğru konumlandırılmış PV panellerin
gerçek güneş ışınımı ve ortam sıcaklığı değerleri altındaki verimleri ve elektriksel güç davranışları
incelenmiştir. Bunun yanı sıra, rüzgâr hızı parametresinin etkisi de dikkate alınarak panel verimleri ve
PV panel çıkış gücü üzerindeki etkisi değerlendirilmiştir. Sonuçlar değerlendirildiğinde, rüzgârın etkisinin
PV panellerin verimlerini yükselttiği ve buna bağlı olarak PV çıkış gücünün arttığı doğrulanmıştır.

References

  • Akhsassi, M., El Fathi, A., Erraissi, N., Aarich, N., Bennouna, A., Raoufi, M. and Outzourhit, A., 2018. Experimental investigation and modeling of the thermal behavior of a solar PV module. Solar Energy Materials and Solar Cells, 180, 271-279.
  • Al-Ghezi, M. K., Ahmed, R. T., Chaichan, M. T., 2022. The Influence of Temperature and Irradiance on Performance of the photovoltaic panel in the Middle of Iraq. International Journal of Renewable Energy Development, 11(2), 501.
  • Alsayed, M., Cacciato, M., Scarcella, G. and Scelba, G., 2013. Multicriteria optimal sizing of photovoltaic-wind turbine grid connected systems. IEEE Transactions on energy conversion, 28(2), 370-379.
  • Aly, S. P., Ahzi, S. and Barth, N., 2019. Effect of physical and environmental factors on the performance of a photovoltaic panel. Solar Energy Materials and Solar Cells, 200, 109948.
  • Aoun, N., 2021. Outdoor testing of free standing PV module temperature under desert climate: a comparative study. International Journal of Ambient Energy, 42(13), 1484-1491.
  • Aoun, N., 2022. Methodology for predicting the PV module temperature based on actual and estimated weather data. Energy Conversion and Management: X, 14, 100182.
  • Ayaz, R., 2012. Modeling of the different PV technologies using real environmental datum and determination of optimum tilt angles for Istanbul. MSc. Thesis, Yildiz Technical University Graduate School Of Natural And Applied Science, Istanbul, 72.
  • Barroso, J. S., Barth, N., Correia, J. P. M., Ahzi, S. and Khaleel, M. A., 2016. A computational analysis of coupled thermal and electrical behavior of PV panels. Solar Energy Materials and Solar Cells, 148, 73-86.
  • Deutsche Gesellschaft für Sonnenenergie (DGS), 2013. Planning and installing photovoltaic systems: a guide for installers, architects and engineers. Routledge.
  • Durusu, A., 2016. A new approach for photovoltaic solar plant design and site optimization. PhD. Thesis, Yildiz Technical University Graduate School Of Natural And Applied Science, Istanbul, 136.
  • Ebhota, W. S., & Tabakov, P. Y., 2023. Influence of photovoltaic cell technologies and elevated temperature on photovoltaic system performance. Ain Shams Engineering Journal, 14(7), 101984.
  • Gokmen, N., Hu, W., Hou, P., Chen, Z., Sera, D. and Spataru, S., 2016. Investigation of wind speed cooling effect on PV panels in windy locations. Renewable Energy, 90, 283-290.
  • Ibrahim, H. and Anani, N., 2017. Variations of PV module parameters with irradiance and temperature. Energy Procedia, 134, 276-285.
  • Kaldellis, J. K., Kapsali, M. and Kavadias, K. A., 2014. Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renewable Energy, 66, 612-624.
  • Kaplani, E. and Kaplanis, S., 2014. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Solar Energy, 107, 443-460.
  • Kazem, H. A., Al-Waeli, A. H., Chaichan, M. T., Al-Waeli, K. H., Al-Aasam, A. B., & Sopian, K., 2020. Evaluation and comparison of different flow configurations PVT systems in Oman: A numerical and experimental investigation. Solar Energy, 208, 58-88.
  • Khatib, T., Mohamed, A. and Sopian, K., 2012. A review of solar energy modeling techniques. Renewable and Sustainable Energy Reviews, 16(5), 2864-2869.
  • King, D. L., Kratochvil, J. A. and Boyson, W. E., 2004. Photovoltaic array performance model. United States Department of Energy, 8, 1-19.
  • Koehl, M., Heck, M., Wiesmeier, S. and Wirth, J., 2011. Modeling of the nominal operating cell temperature based on outdoor weathering. Solar Energy Materials and Solar Cells, 95(7), 1638-1646.
  • Malik, P., Chandel, S. S., 2021. A new integrated single‐diode solar cell model for photovoltaic power prediction with experimental validation under real outdoor conditions. International Journal of Energy Research, 45(1), 759-771.
  • Mustafa, R. J., Gomaa, M. R., Al-Dhaifallah, M., Rezk, H., 2020. Environmental impacts on the performance of solar photovoltaic systems. Sustainability, 12(2), 608.
  • Obiwulu, A. U., Erusiafe, N., Olopade, M. A. and Nwokolo, S. C., 2020. Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance. Renewable Energy, 154, 404-431.
  • Skoplaki, E., Boudouvis, A. G.and Palyvos, J. A., 2008. A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar energy materials and solar cells, 92(11), 1393-1402.
  • Skoplaki, E. and Palyvos, J. A., 2009. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar energy, 83(5), 614-624.
  • Sun, C., Zou, Y., Qin, C., Zhang, B., Wu, X., 2022. Temperature effect of photovoltaic cells: a review. Advanced Composites and Hybrid Materials, 5(4), 2675-2699. Yigit and Arslanoğlu, N., 2021. Anlık işinim şiddeti ve çevresel faktörlere bağlı optimum PV panel açısı, verim, güç üretiminin incelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(1), 301-314.
  • Yolcan, O. O., Kose, R., 2023. Photovoltaic module cell temperature estimation: Developing a novel expression. Solar Energy, 249, 1-11.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Erşan Ömer Yüzer 0000-0002-9089-1358

Altuğ Bozkurt 0000-0001-6458-1260

Early Pub Date October 27, 2023
Publication Date October 30, 2023
Submission Date May 21, 2023
Published in Issue Year 2023

Cite

APA Yüzer, E. Ö., & Bozkurt, A. (2023). Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(5), 1171-1179. https://doi.org/10.35414/akufemubid.1300086
AMA Yüzer EÖ, Bozkurt A. Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2023;23(5):1171-1179. doi:10.35414/akufemubid.1300086
Chicago Yüzer, Erşan Ömer, and Altuğ Bozkurt. “Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 5 (October 2023): 1171-79. https://doi.org/10.35414/akufemubid.1300086.
EndNote Yüzer EÖ, Bozkurt A (October 1, 2023) Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 5 1171–1179.
IEEE E. Ö. Yüzer and A. Bozkurt, “Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 5, pp. 1171–1179, 2023, doi: 10.35414/akufemubid.1300086.
ISNAD Yüzer, Erşan Ömer - Bozkurt, Altuğ. “Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/5 (October 2023), 1171-1179. https://doi.org/10.35414/akufemubid.1300086.
JAMA Yüzer EÖ, Bozkurt A. Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1171–1179.
MLA Yüzer, Erşan Ömer and Altuğ Bozkurt. “Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 5, 2023, pp. 1171-9, doi:10.35414/akufemubid.1300086.
Vancouver Yüzer EÖ, Bozkurt A. Evaluation of Photovoltaic Panel Power Generation Based on Instant Solar Radiation and Meteorological Parameters. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(5):1171-9.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.