Research Article
BibTex RIS Cite

Photoelectrochemical Performance of Nanotube Structured TiO2 Electrodes Produced by Anodic Oxidation in Aqueous Medium

Year 2024, , 694 - 701, 27.06.2024
https://doi.org/10.35414/akufemubid.1309914

Abstract

TiO2 was formed on the surface of the titanium plate by two different methods. The first method used is thermal oxidation and the second is anodic oxidation. The production of TiO2 by thermal oxidation was carried out by heating the Ti plate in an air environment in a laboratory oven for 3 hours. The anodic oxidation was carried out by applying a constant voltage of 20 V to the Ti Plate in an aqueous electrolyte containing HF. Nanotube-structured amorphous TiO2 is obtained on the Ti plate by anodic oxidation method. To crystallize the amorphous structure, it was heated in the laboratory oven for 3 hours in an air environment. The electrodes were heat treated at 400, 500, 550, 600, 650, and 700 °C in both methods. The obtained electrodes were characterized using XRD and SEM methods. XRD results showed that most of the TiO2 on the surface of the electrodes calcined up to 500 °C was amorphous, while those calcined at 600 °C and higher temperatures were largely crystalline. Photocurrent values of the prepared electrodes in 0.5 M Na2SO4 solution were measured under UV light and their photoelectrochemical performances were examined comparatively. When the performances of the electrodes obtained by using different methods and at different temperatures were compared, the highest photocurrent value was obtained with the electrode (TiNT-HF-650-20min) produced by anodic oxidation for 20 minutes on the Ti plate surface and calcined at 650 °C. It was determined that the photocurrent value obtained under UV light of nanotube-structured TiO2 prepared by the anodic oxidation method was approximately 1.5 times higher than that obtained by thermal oxidation. It has been determined that there is a remarkable improvement in the photoelectrochemical performance of the TiO2 electrode, which can be obtained as a nanotube structure in an aqueous medium by anodic oxidation in a short time of 20 minutes.

Project Number

13.FENED.09

References

  • Albu, S.P., Ghicov, A., Aldabergenova, S., Drechsel, P. LeClere, D.,Thompson, G.E., Macak, J.M. and Schmuki, P., 2008. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Advanced Materials, 20(21), 4135 – 41393. https://doi.org/10.1002/adma.200801189
  • Alijani, M., Sopha, H., Ng, S. and Macak, J.M., 2021. High aspect ratio TiO2 nanotube layers obtained in a very short anodization time. Electrochimica Acta, 37620, Article number 138080. https://doi.org/10.1016/j.electacta.2021.138080
  • Arora, I., Chawla, H., Chandra, A., Sagadevan, S. and Garg, S., 2022. Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorganic Chemistry Communications, 143, Article number 109700. https://doi.org/10.1016/j.inoche.2022.109700
  • Chen, D., Zhang, H., Li, X. and Li, J., 2010. Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Analytical Chemistry, 82, 2253-2261. https://doi.org/10.1021/ac9021055
  • Çetinkaya, S., Khamidov, G., Özcan, L., Palmisano, L. and Yurdakal, S., 2022. Selective photoelectrocatalytic oxidation of glycerol by nanotube, nanobelt and nanosponge structured TiO2 on Ti plates. Journal of Environmental Chemical Engineering, 10(2), Article number 107210. https://doi.org/10.1016/j.jece.2022.107210
  • Durdu, S., Yalçın, E., Altınkök, A. and Çavuşoğlu, K., 2023. Characterization and investigation of electrochemical and biological properties of antibacterial silver nanoparticle-deposited TiO2 nanotube array surfaces. Scientific Reports, 13(1), Article number 4699. https://doi.org/10.1038/s41598-023-31937-6
  • Herrmann J.M., 1999. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53, 115–129. https://doi.org/10.1016/S0920-5861(99)00107-8
  • Ma, X., Chen, Q. Liu, G., Zhou, Y., Ma, D., Xin, S., Yu, C., Zhang, B. and Xin, Y. 2020. Construction of netlike 3D Z-scheme photoelectrodes with improved photocatalytic performance based on g-C3N4 nanosheets modified TiO2 nanobelt-tubes. Chemical Engineering Science, 22623, Article number 115844. https://doi.org/10.1016/j.ces.2020.115844
  • Mahlambi M. M., Ngila C. J. and Mamba, B. B., 2015. Recent developments in environmental photocatalytic degradation of organic pollutants: The case of titanium dioxide nanoparticles-A review. Journal of Nanomaterials, Article ID 790173. https://doi.org/10.1155/2015/790173
  • Malato S., Fernández-Ibáñez, P., Maldonado M.I., Blanco J. and Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147, 1–59. https://doi.org/10.1016/j.cattod.2009.06.018
  • Özcan L., Yurdakal S., Augugliaro V., Loddo V., Palmas S., Palmisano G. and Palmisano L., 2013. Photoelectrocatalytic selective oxidation of 4-methoxybenzyl alcohol in water by TiO2 supported on titanium anodes. Applied Catalysis B: Environmental, (132–133), 535–542. https://doi.org/10.1016/j.apcatb.2012.12.030
  • Özcan L., Yalçın P., Alagöz O. and Yurdakal S., 2017. Selective photoelectrocatalytic oxidation of 5-(hydroxymethyl)-2-furaldehyde in water by using Pt loaded nanotube structure of TiO2 on Ti photoanodes. Catalysis Today, 281, 205–213. https://doi.org/10.1016/j.cattod.2016.07.024
  • Özcan, L., Mutlu, T. and Yurdakal, S., 2018. Photoelectrocatalytic degradation of paraquat by Pt loaded TiO2 nanotubes on Ti anodes. Materials, 11(9), Article number 1715. https://doi.org/10.3390/ma11091715
  • Özcan, L. and Efe, E., 2019. Photoelectrochemical determination of paracetamol by using TiO2 modified FTO Electrodes. Analytical and Bioanalytical Electrochemistry, 11(8), 1117-1128.
  • Rios, J., Santini, V.N., Pereira, K.D., Luchessi, A.D., Lopes, É.S.N., Caram, R. and Cremasco, A., 2022. Self-organized TiO2 nanotubes on Ti-Nb-Fe alloys for biomedical applications: Synthesis and characterization. Electrochemistry Communications, 138, Article number 107280. https://doi.org/10.1016/j.elecom.2022.107280
  • Sabzi, M. and Mousavi Anijdan, S.H., 2019. Microstructural analysis and optical properties evaluation of sol-gel heterostructured NiO-TiO2 film used for solar panels. Ceramics International, 45(3), 3250-3255. https://doi.org/10.1016/j.ceramint.2018.10.229
  • Smith, Y.R., Ry, R.S., Carlson, K., Sarma, B. and Misra, M., 2013. Self-ordered titanium dioxide nanotube arrays: anodic synthesis and their photo/electro-catalytic applications. Materials, 6, 2892-2957. https://doi.org/10.3390/ma6072892
  • Su, Y.-L., Zhang, F.-B., Du, Y.-X. and Xiao, Y.-T., 2009. Preparation of TiO2 nanotubes by anodization and its photocatalytic properties. Chinese Journal of Inorganic Chemistry, 25(11), 1994-2002.
  • Syrek, K., Skolarczyk, M., Zych, M., Sołtys-Mróz, M. and Sulka G.D., 2019. A photoelectrochemical sensor based on anodic TiO2 for glucose determination. Sensors, 19(222), Article number 4981. https://doi.org/10.3390/s19224981
  • Tekin, T., Tekin, D. ve Kızıltaş, H., 2016. TiO2 ve AgS katkılı TiO2 nanotüp fotokatalizörlerinin sentezlenmesi ve karakterizasyonu. Çukurova University Journal of the Faculty of Engineering and Architecture, 31(ÖS 2), ÖS 181-ÖS 186. https://doi.org/10.21605/cukurovaummfd.316757
  • Vural, K.B., Kaderoğlu, Ç. and Ellialtıoğlu, Ş., 2023. Density functional theory investigation of Pr adsorption on the anatase TiO2(101) surface for photovoltaic applications. Applied Surface Science, 613, Article number 156042. https://doi.org/10.1016/j.apsusc.2022.156042
  • Wang, G.-L., Xu, J.-J., Chen, H.-Y. and Fu, S.-Z., 2009. Label-free photoelectrochemical immunoassay for α-fetoprotein detection based on TiO2/CdS hybrid. Biosensors and Bioelectronics, 25, 791–796. https://doi.org/10.1016/j.bios.2009.08.027
  • Wang, M., Zhan Y., Wang H., Zhang, C., Li G. and Zou, L., 2022. A photoelectrochemical sensor for glutathione based on Bi2S3-modified TiO2 nanotube arrays. New Journal of Chemistry, 46(17), 8162-8170. https://doi.org/10.1039/D1NJ0604 5G
  • Xing, L., Jia, J., Wang, Y., Zhang, B. and Dong, S., 2010. Pt modified TiO2 nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation. International Journal of Hydrogen Energy, 35, 12169-12173. https://doi.org/10.1016/j.ijhydene.2010.07.162
  • Yılmaz, H.Ç., İlhan C., Akgeyik E. and Erdemoğlu S., 2021. Preparation and characterization of Co doped TiO2 for efficient photocatalytic degradation of ibuprofen. Journal of the Turkish Chemical Society Section A: Chemistry, 8(2) 553-566. https://doi.org/ 10.18596/jotcsa.855107
  • Zhang F.-S. and Itoh, H., 2006. Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere, 65, 125-131. https://doi.org/10.1016/j.chemosphere.2006.02.027
  • Zheng C., Lin J., Song X., Gan Q. and Lin X., 2022.TiO2-Nanoparticle-shelled light-driven microcleaner for fast and highly efficient degradation of organic pollutants. ACS Applied Nano Materials, 5(11), 16573-16583. https://doi.org/10.1021/acsanm.2c03659

Sulu Ortamda Anodik Yükseltgenmeyle Elde Edilen Nanotüp Yapılı TiO2 Elektrotların Fotoelektrokimyasal Performansı

Year 2024, , 694 - 701, 27.06.2024
https://doi.org/10.35414/akufemubid.1309914

Abstract

Levha halindeki titanyum metalinin yüzeyinde iki farklı yöntemle TiO2 oluşturulmuştur. Kullanılan ilk yöntem termal yükseltgenme ikincisi ise anodik yükseltgenmedir. Termal yükseltgenme ile TiO2 eldesi, Ti levhanın hava ortamında laboratuvar fırınında 3 saat ısıtılmasıyla gerçekleştirilmiştir. Anodik yükseltgenme HF içeren sulu elektrolit içerisinde 20 V sabit gerilimin Ti levhaya uygulanmasıyla yapılmıştır. Anodik yükseltgeme yöntemi ile Ti levha yüzeyinde nanotüp yapılı amorf TiO2 elde edilmektedir. Amorf yapının kristallenmesi için hava ortamında laboratuvar fırınında 3 saat ısıtma uygulanmıştır. Her iki yöntemde de elektrotlar 400, 500, 550, 600, 650 ve 700 °C’de ısıl muameleye tabi tutulmuştur. Elde edilen elektrotlar XRD ve SEM yöntemleri kullanılarak karakterize edilmiştir. XRD sonuçları, 500 °C’ye kadar kalsine edilen elektrotların yüzeyindeki TiO2’nin çoğunun amorf yapıda olduğunu, 600 °C ve daha yüksek sıcaklıklarda kalsine edilenlerin çok büyük oranda kristal yapıda olduğunu göstermiştir. Hazırlanan elektrotların 0,5 M Na2SO4 çözeltisinde UV ışığı altında fotoakım değerleri ölçülmüş ve fotoelektrokimyasal performansları karşılaştırmalı olarak incelenmiştir. Farklı yöntemler kullanılarak ve farklı sıcaklıklarda elde edilen elektrotların performansları karşılaştırıldığında en yüksek fotoakım değeri, Ti levha yüzeyinde 20 dakikalık anodik yükseltgemeyle üretilen ve 650 °C’de kalsine edilen elektrotla (TiNT-HF-650-20dk) elde edilmiştir. Anodik yükseltgenme yöntemiyle hazırlanan nanotüp yapılı TiO2’nin UV ışığı altında elde edilen fotoakım değerinin termal yükseltgenme ile elde edilene kıyasla 1,5 kata yakın daha yüksek olduğu belirlenmiştir. 20 dakikalık kısa bir sürede anodik yükseltgenme ile sulu ortamda nanotüp yapılı olarak elde edilebilen TiO2 elektrodunun fotoelektrokimyasal performansında kayda değer bir iyileşme olduğu belirlenmiştir.

Supporting Institution

Afyon Kocatepe Üniversitesi

Project Number

13.FENED.09

Thanks

Bu çalışmaya 13.FENED.09 numaralı proje ile destek veren Afyon Kocatepe Üniversitesi BAP Koordinasyon Birimine teşekkür ederim.

References

  • Albu, S.P., Ghicov, A., Aldabergenova, S., Drechsel, P. LeClere, D.,Thompson, G.E., Macak, J.M. and Schmuki, P., 2008. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Advanced Materials, 20(21), 4135 – 41393. https://doi.org/10.1002/adma.200801189
  • Alijani, M., Sopha, H., Ng, S. and Macak, J.M., 2021. High aspect ratio TiO2 nanotube layers obtained in a very short anodization time. Electrochimica Acta, 37620, Article number 138080. https://doi.org/10.1016/j.electacta.2021.138080
  • Arora, I., Chawla, H., Chandra, A., Sagadevan, S. and Garg, S., 2022. Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorganic Chemistry Communications, 143, Article number 109700. https://doi.org/10.1016/j.inoche.2022.109700
  • Chen, D., Zhang, H., Li, X. and Li, J., 2010. Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Analytical Chemistry, 82, 2253-2261. https://doi.org/10.1021/ac9021055
  • Çetinkaya, S., Khamidov, G., Özcan, L., Palmisano, L. and Yurdakal, S., 2022. Selective photoelectrocatalytic oxidation of glycerol by nanotube, nanobelt and nanosponge structured TiO2 on Ti plates. Journal of Environmental Chemical Engineering, 10(2), Article number 107210. https://doi.org/10.1016/j.jece.2022.107210
  • Durdu, S., Yalçın, E., Altınkök, A. and Çavuşoğlu, K., 2023. Characterization and investigation of electrochemical and biological properties of antibacterial silver nanoparticle-deposited TiO2 nanotube array surfaces. Scientific Reports, 13(1), Article number 4699. https://doi.org/10.1038/s41598-023-31937-6
  • Herrmann J.M., 1999. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53, 115–129. https://doi.org/10.1016/S0920-5861(99)00107-8
  • Ma, X., Chen, Q. Liu, G., Zhou, Y., Ma, D., Xin, S., Yu, C., Zhang, B. and Xin, Y. 2020. Construction of netlike 3D Z-scheme photoelectrodes with improved photocatalytic performance based on g-C3N4 nanosheets modified TiO2 nanobelt-tubes. Chemical Engineering Science, 22623, Article number 115844. https://doi.org/10.1016/j.ces.2020.115844
  • Mahlambi M. M., Ngila C. J. and Mamba, B. B., 2015. Recent developments in environmental photocatalytic degradation of organic pollutants: The case of titanium dioxide nanoparticles-A review. Journal of Nanomaterials, Article ID 790173. https://doi.org/10.1155/2015/790173
  • Malato S., Fernández-Ibáñez, P., Maldonado M.I., Blanco J. and Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147, 1–59. https://doi.org/10.1016/j.cattod.2009.06.018
  • Özcan L., Yurdakal S., Augugliaro V., Loddo V., Palmas S., Palmisano G. and Palmisano L., 2013. Photoelectrocatalytic selective oxidation of 4-methoxybenzyl alcohol in water by TiO2 supported on titanium anodes. Applied Catalysis B: Environmental, (132–133), 535–542. https://doi.org/10.1016/j.apcatb.2012.12.030
  • Özcan L., Yalçın P., Alagöz O. and Yurdakal S., 2017. Selective photoelectrocatalytic oxidation of 5-(hydroxymethyl)-2-furaldehyde in water by using Pt loaded nanotube structure of TiO2 on Ti photoanodes. Catalysis Today, 281, 205–213. https://doi.org/10.1016/j.cattod.2016.07.024
  • Özcan, L., Mutlu, T. and Yurdakal, S., 2018. Photoelectrocatalytic degradation of paraquat by Pt loaded TiO2 nanotubes on Ti anodes. Materials, 11(9), Article number 1715. https://doi.org/10.3390/ma11091715
  • Özcan, L. and Efe, E., 2019. Photoelectrochemical determination of paracetamol by using TiO2 modified FTO Electrodes. Analytical and Bioanalytical Electrochemistry, 11(8), 1117-1128.
  • Rios, J., Santini, V.N., Pereira, K.D., Luchessi, A.D., Lopes, É.S.N., Caram, R. and Cremasco, A., 2022. Self-organized TiO2 nanotubes on Ti-Nb-Fe alloys for biomedical applications: Synthesis and characterization. Electrochemistry Communications, 138, Article number 107280. https://doi.org/10.1016/j.elecom.2022.107280
  • Sabzi, M. and Mousavi Anijdan, S.H., 2019. Microstructural analysis and optical properties evaluation of sol-gel heterostructured NiO-TiO2 film used for solar panels. Ceramics International, 45(3), 3250-3255. https://doi.org/10.1016/j.ceramint.2018.10.229
  • Smith, Y.R., Ry, R.S., Carlson, K., Sarma, B. and Misra, M., 2013. Self-ordered titanium dioxide nanotube arrays: anodic synthesis and their photo/electro-catalytic applications. Materials, 6, 2892-2957. https://doi.org/10.3390/ma6072892
  • Su, Y.-L., Zhang, F.-B., Du, Y.-X. and Xiao, Y.-T., 2009. Preparation of TiO2 nanotubes by anodization and its photocatalytic properties. Chinese Journal of Inorganic Chemistry, 25(11), 1994-2002.
  • Syrek, K., Skolarczyk, M., Zych, M., Sołtys-Mróz, M. and Sulka G.D., 2019. A photoelectrochemical sensor based on anodic TiO2 for glucose determination. Sensors, 19(222), Article number 4981. https://doi.org/10.3390/s19224981
  • Tekin, T., Tekin, D. ve Kızıltaş, H., 2016. TiO2 ve AgS katkılı TiO2 nanotüp fotokatalizörlerinin sentezlenmesi ve karakterizasyonu. Çukurova University Journal of the Faculty of Engineering and Architecture, 31(ÖS 2), ÖS 181-ÖS 186. https://doi.org/10.21605/cukurovaummfd.316757
  • Vural, K.B., Kaderoğlu, Ç. and Ellialtıoğlu, Ş., 2023. Density functional theory investigation of Pr adsorption on the anatase TiO2(101) surface for photovoltaic applications. Applied Surface Science, 613, Article number 156042. https://doi.org/10.1016/j.apsusc.2022.156042
  • Wang, G.-L., Xu, J.-J., Chen, H.-Y. and Fu, S.-Z., 2009. Label-free photoelectrochemical immunoassay for α-fetoprotein detection based on TiO2/CdS hybrid. Biosensors and Bioelectronics, 25, 791–796. https://doi.org/10.1016/j.bios.2009.08.027
  • Wang, M., Zhan Y., Wang H., Zhang, C., Li G. and Zou, L., 2022. A photoelectrochemical sensor for glutathione based on Bi2S3-modified TiO2 nanotube arrays. New Journal of Chemistry, 46(17), 8162-8170. https://doi.org/10.1039/D1NJ0604 5G
  • Xing, L., Jia, J., Wang, Y., Zhang, B. and Dong, S., 2010. Pt modified TiO2 nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation. International Journal of Hydrogen Energy, 35, 12169-12173. https://doi.org/10.1016/j.ijhydene.2010.07.162
  • Yılmaz, H.Ç., İlhan C., Akgeyik E. and Erdemoğlu S., 2021. Preparation and characterization of Co doped TiO2 for efficient photocatalytic degradation of ibuprofen. Journal of the Turkish Chemical Society Section A: Chemistry, 8(2) 553-566. https://doi.org/ 10.18596/jotcsa.855107
  • Zhang F.-S. and Itoh, H., 2006. Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere, 65, 125-131. https://doi.org/10.1016/j.chemosphere.2006.02.027
  • Zheng C., Lin J., Song X., Gan Q. and Lin X., 2022.TiO2-Nanoparticle-shelled light-driven microcleaner for fast and highly efficient degradation of organic pollutants. ACS Applied Nano Materials, 5(11), 16573-16583. https://doi.org/10.1021/acsanm.2c03659
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Electrochemistry
Journal Section Articles
Authors

Levent Özcan 0000-0003-4504-4237

Project Number 13.FENED.09
Early Pub Date June 8, 2024
Publication Date June 27, 2024
Submission Date June 5, 2023
Published in Issue Year 2024

Cite

APA Özcan, L. (2024). Sulu Ortamda Anodik Yükseltgenmeyle Elde Edilen Nanotüp Yapılı TiO2 Elektrotların Fotoelektrokimyasal Performansı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(3), 694-701. https://doi.org/10.35414/akufemubid.1309914
AMA Özcan L. Sulu Ortamda Anodik Yükseltgenmeyle Elde Edilen Nanotüp Yapılı TiO2 Elektrotların Fotoelektrokimyasal Performansı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2024;24(3):694-701. doi:10.35414/akufemubid.1309914
Chicago Özcan, Levent. “Sulu Ortamda Anodik Yükseltgenmeyle Elde Edilen Nanotüp Yapılı TiO2 Elektrotların Fotoelektrokimyasal Performansı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 3 (June 2024): 694-701. https://doi.org/10.35414/akufemubid.1309914.
EndNote Özcan L (June 1, 2024) Sulu Ortamda Anodik Yükseltgenmeyle Elde Edilen Nanotüp Yapılı TiO2 Elektrotların Fotoelektrokimyasal Performansı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 3 694–701.
IEEE L. Özcan, “Sulu Ortamda Anodik Yükseltgenmeyle Elde Edilen Nanotüp Yapılı TiO2 Elektrotların Fotoelektrokimyasal Performansı”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, pp. 694–701, 2024, doi: 10.35414/akufemubid.1309914.
ISNAD Özcan, Levent. “Sulu Ortamda Anodik Yükseltgenmeyle Elde Edilen Nanotüp Yapılı TiO2 Elektrotların Fotoelektrokimyasal Performansı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/3 (June 2024), 694-701. https://doi.org/10.35414/akufemubid.1309914.
JAMA Özcan L. Sulu Ortamda Anodik Yükseltgenmeyle Elde Edilen Nanotüp Yapılı TiO2 Elektrotların Fotoelektrokimyasal Performansı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:694–701.
MLA Özcan, Levent. “Sulu Ortamda Anodik Yükseltgenmeyle Elde Edilen Nanotüp Yapılı TiO2 Elektrotların Fotoelektrokimyasal Performansı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, 2024, pp. 694-01, doi:10.35414/akufemubid.1309914.
Vancouver Özcan L. Sulu Ortamda Anodik Yükseltgenmeyle Elde Edilen Nanotüp Yapılı TiO2 Elektrotların Fotoelektrokimyasal Performansı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(3):694-701.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.