Research Article
BibTex RIS Cite

Investigation on Dressing Frequency, Welding Current and Time Using Taguchi Methodology in Robotic Spot Welding with SmartblockTM

Year 2024, , 207 - 216, 27.02.2024
https://doi.org/10.35414/akufemubid.1337900

Abstract

Electrode wear and its effective use in robotic resistance spot welding are a condition that should be followed closely. The benefit-harm effect of an electrode that is replaced early or an electrode that exceeds its lifespan is reflected negatively on costs. While it is expected that the electrodes will give the resistance spot welding form in accordance with the specification; the weld nugget diameter measurements are different from the expected values due to wear and the electrode dressing process is applied to solve this problem. In this study, the automation of this process was carried out by means of the SmartblockTM and the effects of dressing frequency, welding current and time on the final nugget diameter properties of robot spot welds were studied using the "SmartblockTM" control algorithm. As 70 spot welds were found as the most suitable electrode dressing frequency, 100 ms welding time and 8 kA welding current were the other optimum parameters for better spot welding.

Project Number

ARGE-2022-027_2200850000

References

  • Açış, İ. F., Talaş, Ş., 2023. Performance of resistance spot weld caps coated with Ni and Fe aluminide alloys by electro spark deposition on hot dip galvanized steel, Revista de Metalurgia, 59(1), 237. https://doi.org/10.3989/revmetalm.237
  • Arslan, S. ve Karabaş, M., 2019. Effect of Different Magnet Geometry On Magnetically Assisted Resistance Spot Welding, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 129-139. Doi: https://doi.org/10.35414/akufemubid.436609.
  • Bower, R. J., Sorensen, C. D., and Eager T. W., 1990. Electrode Geometry in Resistance Spot Welding. Welding Journal, February, 45-51.
  • Bozkurt, Y., Keleş, D., 2017. Effect on Worker Health of Emerging Gas and Fume in Fusion Welding Methods, Marmara Fen Bilimleri Dergisi, 4, 144-150. https://doi.org/10.7240/marufbd.372945 .
  • Chen, T., Ling, Z., Wang, M., Kong, L., 2020. Effect of a slightly concave electrode on resistance spot welding of Q&P1180 steel, Journal of Materials Processing Technology, 285, 116797. https://doi.org/10.1016/j.jmatprotec.2020.116797
  • Deepati, A.K., Alhazmi, W., Benjeer, I., 2021. Mechanical characterization of AA5083 aluminum alloy welded using resistance spot welding for the lightweight automobile body fabrication, Materialstoday Proceedings, 45(6), 5139-5148. https://doi.org/10.1016/j.matpr.2021.01.646 .
  • Demir, B., Elitaş, M. & Karakuş, H., 2021. Investigation of the Effect of the Electrode Tip Type on the Mechanical Properties of Advanced High Strength Steel Combined with Resistance Spot Welding, Gazi Mühendislik Bilimleri Dergisi, 7(3) 277-285. https://dx.doi.org/10.30855/gmbd.2021.03.10 .
  • DiGiovanni, C., He, L., Pistek, U., Goodwin, F., Biro, E., Zhou N.Y., 2020. Role of spot weld electrode geometry on liquid metal embrittlement crack development, Journal of Manufacturing Processes, 49, 1-9. https://doi.org/10.1016/j.jmapro.2019.11.015 .
  • Ertan, R., Aras, S., Özgül, H.G., 2019. The Effect of the Welding Current on the Mechanical Properties of the New Generation Steels Welded with Resistance Spot Welding, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19, 025902 (461-469).
  • Ertek Emre, H., 2019. Strength Optimization of Resistance Spot Welded TWIP Steel by Taguchi Method. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 778-787.
  • Kekik, M., Özen, F., İlhan, E., Aslanlar, S., Microstructural Evaluation and Influence of Welding Parameters on Electrode Plunge Depth in Resistance Spot Welded Dissimilar DP800HF/1200M Steel Joints, 2021. Academic Platform Journal of Engineering and Science, 9(2), 284-291. https://doi.org/10.21541/apjes.859623.
  • Kim, D., Yu, J., Rhee, S., 2016. Effect of a conically shaped hollow electrode on advanced high strength steel in three-sheet resistance spot welding, International Journal of Precision Engineering and Manufacturing, 17, 331-336. https://doi.org/10.1007/s12541-016-0041-9.
  • Li, M., Wang, Y., Yang, S., Tao, W., Zhang, G., 2021. Improving mechanical properties and electrode life for joining aluminum alloys with innovatively designated Newton ring electrode, Journal of Manufacturing Processes, 64,948-959. https://doi.org/10.1016/j.jmapro.2021.02.001.
  • Ma, Y., Takikawa, A., Nakanishi, J., Doira, K., Shimizu, T., Lu, Y., Ma, N., 2021. Measurement of local material properties and failure analysis of resistance spot welds of advanced high-strength steel sheets, Materials & Design, 201, 10955. https://doi.org/10.1016/j.matdes.2021.109505.
  • Mat Yasin, N.A., Alisibramulisi, A., Salleh, Z., Ghazali, F., 2020. Optimization of Resistance Spot Welding (RSW) Parameters by using Taguchi Method, International Journal of Innovative Technology and Exploring Engineering, 9(3), 2795-2800.
  • Mohsin, I., He, K., Li, Z., Zhang, F., Du, R., 2020, Optimization of the Polishing Efficiency and Torque by Using Taguchi Method and ANOVA in Robotic Polishing, Applied Sciences, 10(3),824. https://doi.org/10.3390/app10030824.
  • Moshayedi, H., Sattari-Far, I., 2012, Numerical and experimental study of nugget size growth in resistance spot welding of austenitic stainless steels, Journal of Materials Processing Technology, 212(2), 347–354. https://doi.org/10.1016/j.jmatprotec.2011.09.004.
  • Ogawa, Y., Ohara, I., Arakawa, J., Akebono, H., Sugetu, A., 2022. Effects of welding defects on the fatigue properties of spot welded automobile steel sheets and the establishment of a fatigue life evaluation Method, Welding in the World, 66, 745–752. https://doi.org/10.1007/s40194-021-01238-5.
  • Pashazadeh, H., Gheisari, Y., Hamedi, M., 2016, Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm. Journal of Intelligence Manufacturing, 27, 549–559. https://doi.org/10.1007/s10845-014-0891-x.
  • Piott, M., Werber, A., Schleuss, L., Doynov, N., Ossenbrink, R., Michailov, V.G., 2020. A study of the heat transfer mechanism in resistance spot welding of aluminum alloys AA5182 and AA6014. The International Journal of Advanced Manufacturing Technology, 111, 263–271. https://doi.org/10.1007/s00170-020-05650-x.
  • Sabırlı, A. ve Fığlalı, A., 2020. Optimization of Electric Resistance Welding Parameters by Taguchi Method to Achieve Optimum Nugget Size. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 3(2), 223-229.
  • Saha, D.C., Han, S., Chin, K.G., Choi, I., Park, Y. Do, 2012. Weldability evaluation and microstructure analysis of resistance-spot-welded high-Mn steel in automotive application, Steel Research International, 83, 352–35. https://doi.org/10.1002/srin.201100324 .
  • Smartblock Tanıtım Broşürü, 2020. TOFAŞ Türk Otomobil Fabrikası A.Ş., AR-GE Merkezi, Bursa.
  • Tutar, M., Aydın, H., Bayram, A., 2017, Effect of Weld Current on the Microstructure and Mechanical Properties of a Resistance Spot-Welded TWIP Steel Sheet, Materials, 7, 519. https://doi.org/10.3390/met7120519.
  • Wan, X., Wang, Y., Zhao, D., 2016. Multiple Quality Characteristics Prediction and Parameter Optimization in Small-Scale Resistance Spot Welding, Arabian Journal for Science and Engineering, 41, 2011–2021. https://doi.org/10.1007/s13369-016-2061-2.
  • Watmon, T. B., Wandera, C., Apora, J., 2020. Characteristics of resistance spot welding using annular recess electrodes, Journal of Advanced Joining Processes, 2, 100035. https://doi.org/10.1016/j.jajp.2020.100035.
  • Xing, B., Yan, S., Zhou, H., Chen, H., Qin, Q. H., 2018. Qualitative and quantitative analysis of misaligned electrode degradation when welding galvannealed steel, The International Journal of Advanced Manufacturing Technology, 97, 629–640. https://doi.org/10.1007/s00170-018-1958-1.
  • http://erdemir.ro/Sites/1/upload/files/Yassi_Urun_Katalogu_2020_subat-1205.pdf, (10.02.2023).

Robot Nokta Kaynaklarında SmartblockTM ile Elektrot Bileme Sıklığı, Kaynak Akımı ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması

Year 2024, , 207 - 216, 27.02.2024
https://doi.org/10.35414/akufemubid.1337900

Abstract

Robot direnç nokta kaynaklarında elektrot aşınması ve efektif kullanımı iyi takip edilmesi gereken bir durumdur. Erkenden değiştirilen bir elektrot veya kullanım süresini aşan bir elektrodun getireceği fayda-zarar etkisi maliyetlere olumsuz olarak yansımaktadır. Elektrotların direnç nokta kaynağı boyutlarının şartnameye uygun oluşturması beklenirken aşınma ile beraber kaynak çekirdek boyut ölçümleri beklenen değerlerden farklı çıkmaktadır ve bu sorunun çözümü için elektrot bileme işlemi uygulanmaktadır. Bu çalışmada, prosesin otomatik hale getirilmesi SmartblockTM vasıtasıyla gerçekleştirilmiştir ve “SmartblockTM” kontrol algoritması kullanılarak bileme sıklığı, kaynak akımı ve süresinin robot nokta kaynaklarındaki en son çekirdek çap özelliklerine etkisi çalışılmıştır. En uygun elektrot bileme frekansı olarak 70 nokta kaynağı bulunurken, 100 ms kaynak süresi ve 8 kA kaynak akımı en iyi nokta kaynağı için diğer optimum parametreler olarak ortaya çıkmıştır.

Supporting Institution

Şahinkul Makina ve Yedek Parça Sanayi Tic. A.Ş.

Project Number

ARGE-2022-027_2200850000

Thanks

Robot Nokta Kaynaklarında Smartblock™ ile Elektrot Bileme Sıklığı, Kaynak Akımı ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması isimli makale çalışması için yapılan deneysel çalışmalar Şahinkul Makina ve Yedek Parça Sanayi Tic. A.Ş. tarafından desteklenmiştir.

References

  • Açış, İ. F., Talaş, Ş., 2023. Performance of resistance spot weld caps coated with Ni and Fe aluminide alloys by electro spark deposition on hot dip galvanized steel, Revista de Metalurgia, 59(1), 237. https://doi.org/10.3989/revmetalm.237
  • Arslan, S. ve Karabaş, M., 2019. Effect of Different Magnet Geometry On Magnetically Assisted Resistance Spot Welding, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 129-139. Doi: https://doi.org/10.35414/akufemubid.436609.
  • Bower, R. J., Sorensen, C. D., and Eager T. W., 1990. Electrode Geometry in Resistance Spot Welding. Welding Journal, February, 45-51.
  • Bozkurt, Y., Keleş, D., 2017. Effect on Worker Health of Emerging Gas and Fume in Fusion Welding Methods, Marmara Fen Bilimleri Dergisi, 4, 144-150. https://doi.org/10.7240/marufbd.372945 .
  • Chen, T., Ling, Z., Wang, M., Kong, L., 2020. Effect of a slightly concave electrode on resistance spot welding of Q&P1180 steel, Journal of Materials Processing Technology, 285, 116797. https://doi.org/10.1016/j.jmatprotec.2020.116797
  • Deepati, A.K., Alhazmi, W., Benjeer, I., 2021. Mechanical characterization of AA5083 aluminum alloy welded using resistance spot welding for the lightweight automobile body fabrication, Materialstoday Proceedings, 45(6), 5139-5148. https://doi.org/10.1016/j.matpr.2021.01.646 .
  • Demir, B., Elitaş, M. & Karakuş, H., 2021. Investigation of the Effect of the Electrode Tip Type on the Mechanical Properties of Advanced High Strength Steel Combined with Resistance Spot Welding, Gazi Mühendislik Bilimleri Dergisi, 7(3) 277-285. https://dx.doi.org/10.30855/gmbd.2021.03.10 .
  • DiGiovanni, C., He, L., Pistek, U., Goodwin, F., Biro, E., Zhou N.Y., 2020. Role of spot weld electrode geometry on liquid metal embrittlement crack development, Journal of Manufacturing Processes, 49, 1-9. https://doi.org/10.1016/j.jmapro.2019.11.015 .
  • Ertan, R., Aras, S., Özgül, H.G., 2019. The Effect of the Welding Current on the Mechanical Properties of the New Generation Steels Welded with Resistance Spot Welding, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19, 025902 (461-469).
  • Ertek Emre, H., 2019. Strength Optimization of Resistance Spot Welded TWIP Steel by Taguchi Method. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 778-787.
  • Kekik, M., Özen, F., İlhan, E., Aslanlar, S., Microstructural Evaluation and Influence of Welding Parameters on Electrode Plunge Depth in Resistance Spot Welded Dissimilar DP800HF/1200M Steel Joints, 2021. Academic Platform Journal of Engineering and Science, 9(2), 284-291. https://doi.org/10.21541/apjes.859623.
  • Kim, D., Yu, J., Rhee, S., 2016. Effect of a conically shaped hollow electrode on advanced high strength steel in three-sheet resistance spot welding, International Journal of Precision Engineering and Manufacturing, 17, 331-336. https://doi.org/10.1007/s12541-016-0041-9.
  • Li, M., Wang, Y., Yang, S., Tao, W., Zhang, G., 2021. Improving mechanical properties and electrode life for joining aluminum alloys with innovatively designated Newton ring electrode, Journal of Manufacturing Processes, 64,948-959. https://doi.org/10.1016/j.jmapro.2021.02.001.
  • Ma, Y., Takikawa, A., Nakanishi, J., Doira, K., Shimizu, T., Lu, Y., Ma, N., 2021. Measurement of local material properties and failure analysis of resistance spot welds of advanced high-strength steel sheets, Materials & Design, 201, 10955. https://doi.org/10.1016/j.matdes.2021.109505.
  • Mat Yasin, N.A., Alisibramulisi, A., Salleh, Z., Ghazali, F., 2020. Optimization of Resistance Spot Welding (RSW) Parameters by using Taguchi Method, International Journal of Innovative Technology and Exploring Engineering, 9(3), 2795-2800.
  • Mohsin, I., He, K., Li, Z., Zhang, F., Du, R., 2020, Optimization of the Polishing Efficiency and Torque by Using Taguchi Method and ANOVA in Robotic Polishing, Applied Sciences, 10(3),824. https://doi.org/10.3390/app10030824.
  • Moshayedi, H., Sattari-Far, I., 2012, Numerical and experimental study of nugget size growth in resistance spot welding of austenitic stainless steels, Journal of Materials Processing Technology, 212(2), 347–354. https://doi.org/10.1016/j.jmatprotec.2011.09.004.
  • Ogawa, Y., Ohara, I., Arakawa, J., Akebono, H., Sugetu, A., 2022. Effects of welding defects on the fatigue properties of spot welded automobile steel sheets and the establishment of a fatigue life evaluation Method, Welding in the World, 66, 745–752. https://doi.org/10.1007/s40194-021-01238-5.
  • Pashazadeh, H., Gheisari, Y., Hamedi, M., 2016, Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm. Journal of Intelligence Manufacturing, 27, 549–559. https://doi.org/10.1007/s10845-014-0891-x.
  • Piott, M., Werber, A., Schleuss, L., Doynov, N., Ossenbrink, R., Michailov, V.G., 2020. A study of the heat transfer mechanism in resistance spot welding of aluminum alloys AA5182 and AA6014. The International Journal of Advanced Manufacturing Technology, 111, 263–271. https://doi.org/10.1007/s00170-020-05650-x.
  • Sabırlı, A. ve Fığlalı, A., 2020. Optimization of Electric Resistance Welding Parameters by Taguchi Method to Achieve Optimum Nugget Size. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 3(2), 223-229.
  • Saha, D.C., Han, S., Chin, K.G., Choi, I., Park, Y. Do, 2012. Weldability evaluation and microstructure analysis of resistance-spot-welded high-Mn steel in automotive application, Steel Research International, 83, 352–35. https://doi.org/10.1002/srin.201100324 .
  • Smartblock Tanıtım Broşürü, 2020. TOFAŞ Türk Otomobil Fabrikası A.Ş., AR-GE Merkezi, Bursa.
  • Tutar, M., Aydın, H., Bayram, A., 2017, Effect of Weld Current on the Microstructure and Mechanical Properties of a Resistance Spot-Welded TWIP Steel Sheet, Materials, 7, 519. https://doi.org/10.3390/met7120519.
  • Wan, X., Wang, Y., Zhao, D., 2016. Multiple Quality Characteristics Prediction and Parameter Optimization in Small-Scale Resistance Spot Welding, Arabian Journal for Science and Engineering, 41, 2011–2021. https://doi.org/10.1007/s13369-016-2061-2.
  • Watmon, T. B., Wandera, C., Apora, J., 2020. Characteristics of resistance spot welding using annular recess electrodes, Journal of Advanced Joining Processes, 2, 100035. https://doi.org/10.1016/j.jajp.2020.100035.
  • Xing, B., Yan, S., Zhou, H., Chen, H., Qin, Q. H., 2018. Qualitative and quantitative analysis of misaligned electrode degradation when welding galvannealed steel, The International Journal of Advanced Manufacturing Technology, 97, 629–640. https://doi.org/10.1007/s00170-018-1958-1.
  • http://erdemir.ro/Sites/1/upload/files/Yassi_Urun_Katalogu_2020_subat-1205.pdf, (10.02.2023).
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other), Materials Engineering (Other)
Journal Section Articles
Authors

Hilal Kır 0000-0002-9623-4738

Şükrü Karabulut 0000-0002-6886-9218

Mustafa Yazar 0000-0001-9927-3268

Şükrü Talaş 0000-0002-4721-0844

Project Number ARGE-2022-027_2200850000
Publication Date February 27, 2024
Submission Date August 5, 2023
Published in Issue Year 2024

Cite

APA Kır, H., Karabulut, Ş., Yazar, M., Talaş, Ş. (2024). Robot Nokta Kaynaklarında SmartblockTM ile Elektrot Bileme Sıklığı, Kaynak Akımı ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(1), 207-216. https://doi.org/10.35414/akufemubid.1337900
AMA Kır H, Karabulut Ş, Yazar M, Talaş Ş. Robot Nokta Kaynaklarında SmartblockTM ile Elektrot Bileme Sıklığı, Kaynak Akımı ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. February 2024;24(1):207-216. doi:10.35414/akufemubid.1337900
Chicago Kır, Hilal, Şükrü Karabulut, Mustafa Yazar, and Şükrü Talaş. “Robot Nokta Kaynaklarında SmartblockTM Ile Elektrot Bileme Sıklığı, Kaynak Akımı Ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 1 (February 2024): 207-16. https://doi.org/10.35414/akufemubid.1337900.
EndNote Kır H, Karabulut Ş, Yazar M, Talaş Ş (February 1, 2024) Robot Nokta Kaynaklarında SmartblockTM ile Elektrot Bileme Sıklığı, Kaynak Akımı ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 1 207–216.
IEEE H. Kır, Ş. Karabulut, M. Yazar, and Ş. Talaş, “Robot Nokta Kaynaklarında SmartblockTM ile Elektrot Bileme Sıklığı, Kaynak Akımı ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 1, pp. 207–216, 2024, doi: 10.35414/akufemubid.1337900.
ISNAD Kır, Hilal et al. “Robot Nokta Kaynaklarında SmartblockTM Ile Elektrot Bileme Sıklığı, Kaynak Akımı Ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/1 (February 2024), 207-216. https://doi.org/10.35414/akufemubid.1337900.
JAMA Kır H, Karabulut Ş, Yazar M, Talaş Ş. Robot Nokta Kaynaklarında SmartblockTM ile Elektrot Bileme Sıklığı, Kaynak Akımı ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:207–216.
MLA Kır, Hilal et al. “Robot Nokta Kaynaklarında SmartblockTM Ile Elektrot Bileme Sıklığı, Kaynak Akımı Ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 1, 2024, pp. 207-16, doi:10.35414/akufemubid.1337900.
Vancouver Kır H, Karabulut Ş, Yazar M, Talaş Ş. Robot Nokta Kaynaklarında SmartblockTM ile Elektrot Bileme Sıklığı, Kaynak Akımı ve Süresinin Taguchi Metodolojisi Kullanılarak Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(1):207-16.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.