Research Article
BibTex RIS Cite

Evaluation of the Effects of Imazalil on Genotoxicity and Behavioral Toxicity in Drosophila melanogaster

Year 2024, , 476 - 484, 27.06.2024
https://doi.org/10.35414/akufemubid.1349951

Abstract

Imazalil (IMZ) is an imidazole and triazole derivative fungicide that is widely used to prevent many diseases in vegetable and fruit fields and to prevent post-harvest spoilage. In this study, the genotoxic potential of IMZ at different concentrations (0.25, 1, 4.5 mM) on Drosophila melanogaster was investigated using Somatic Mutation and Recombination (SMART) and Single Cell Gel Electrophoresis (Comet) Assays. The effect of the same IMZ concentrations on behavioral toxicity in D. melanogaster was investigated. Larval weight, crawling, and pupa formation success were performed to determine behavioral toxicity. As a result of the study, it was determined that IMZ generally caused a negative effect on D. melanogaster. In the SMART test, it was found that the differences between the wing preparations of the individuals obtained as a result of all IMZ concentration applications were not statistically significant compared to the negative control. The damage caused to DNA by IMZ was determined by the Comet test, and a statistically significant increase in DNA damage scores was observed at doses of 1 and 4.5 mM. In the crawling experiment of IMZ on D. melanogaster, a decrease in locomotion occurred due to the increase in dose compared to the control group, and these changes were found to be statistically significant at all application doses. Changes in larval weight were not found to be statistically significant. In the pupa formation success experiment, the decrease at 1 and 4.5 mM doses was found to be statistically significant.

References

  • Akdoğan, A., Divrikli, Ü. and Latif, E., 2012. Pestisitlerin önemi ve ekosisteme etkileri. Akademik Gıda, 10, 125-132.
  • Altieri, G., Di Renzo, G.C., Genovese, F., Calandra, M. and Strano, M.C., 2013. A new method for the postharvest application of imazalil fungicide to citrus fruit. Biosystems Engineering, 115, 434-443. https://doi.org/10.1016/j.biosystemseng.2013.04.008
  • Alvarez-Perez, S., de Vega, C., Pozo, M.I., Lenaerts, M., Van Assche, A., Herrera, C.M., ... and Lievens, B., 2016. Nectar yeasts of the Metschnikowia clade are highly susceptible to azole antifungals widely used in medicine and agriculture. FEMS Yeast Research, 16(1), fov115. https://doi.org/10.1093/femsyr/fov115
  • Amkiss, S., Dalouh, A., and Idaomar, M., 2021. Chemical composition, genotoxicity and antigenotoxicity study of Artemisia herba-alba using the eye and wing SMART assay of Drosophila melanogaster. Arabian Journal of Chemistry, 14, 102976. https://doi.org/10.1016/j.arabjc.2020.102976
  • Anushree, A., Ali, M.Z., Bilgrami, A.L., and Ahsan, J., 2023. Acute exposure to arsenic affects pupal development and neurological functions in Drosophila melanogaster. Toxics, 11(4), 327. https://doi.org/10.3390/toxics11040327
  • Aşkın, H., and Uysal, H., 2010. Drosophila melanogaster’de glisitein ve koumestrolün genotoksik etkilerinin somatik mutasyon ve rekombinasyon testi ile belirlenmesi. TÜBAV Bilim Dergisi, 3(3), 264-270.
  • Bianchini, M.C., Gularte, C.O.A., Nogara, P.A., Krum, B.N., Gayer, M.C., Bridi, J.C., ... and Puntel, R.L., 2019. Thimerosal inhibits Drosophila melanogaster tyrosine hydroxylase (Dm TyrH) leading to changes in dopamine levels and impaired motor behavior: implications for neurotoxicity. Metallomics, 11(2), 362-374. https://doi.org/10.1039/c8mt00268a
  • Calap-Quintana, P., González-Fernández, J., Sebastiá-Ortega, N., Llorens, J.V. and Moltó, M.D., 2017. Drosophila melanogaster models of metal-related human diseases and metal toxicity. International journal of molecular sciences, 18(7), 1456. https://doi.org/10.3390/ijms18071456
  • Carmona, E.R., Guecheva, T.N., Creus, A. and Marcos, R., 2010. Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. Environmental and Molecular Mutagenesis, 52, 165–169. https://doi.org/10.1002/em.20604
  • Ciğerci, İ.H., Liman, R., İstifli, E.S., Akyıl, D., Özkara, A., Bonciu, E. and Colă, F., 2023. Cyto-Genotoxic and Behavioral Effects of Flubendiamide in Allium cepa Root Cells, Drosophila melanogaster and Molecular Docking Studies. International Journal of Molecular Sciences, 24(2),1565. https://doi.org/10.3390/ijms24021565
  • Çalı, İ.Ö. and Kesercioğlu, T., 2010. Effects of Fosetyl-Al, a fungicide on meiosis of Lycopersicon esculentum Mill. Bangladesh Journal of Botany, 39, 237-240. https://doi.org/10.3329/bjb.v39i2.7486
  • Çıldır, D.S. and Liman, R., 2020. Cytogenetic and genotoxic assessment in Allium cepa exposed to imazalil fungicide, Environmental Science and Pollution Research, 27, 20335-20343. https://doi.org/10.1007/s11356-020-08553-2
  • Dayanıklı, S., 2014. Gıda katkı maddesi ferrolaktat (e585)'ın Drosophila melanogaster'de yaptığı genotoksik etkilerin smart testi ve comet assay yöntemiyle belirlenmesi, Yüksek Lisans Tezi, Trakya Üniversitesi Fen Bilimleri Enstitüsü, Edirne, 123.
  • Farag, A.T. and İbrahim, H.H., 2007. Developmental toxic effects of antifungal flusilazole administered by gavage to mic. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 80, 12-17. https://doi.org/10.1002/bdrb.20098
  • Fauzi, A., Zubaidah, S., and Susanto, H., 2020. The study of larva and adult behavior of Drosophila melanogaster: Do strains affect behavior?. AIP Conference Proceedings, 1, 2231. https://doi.org/10.1063/5.0002429
  • Gajski, G., Ravlić, S., Godschalk, R., Collins, A., Dusinska, M., and Brunborg, G., 2021. Application of the comet assay for the evaluation of DNA damage in mature sperm. Mutation Research/Reviews in Mutation Research, 788, 108398. https://doi.org/10.1016/j.mrrev.2021.108398
  • Ghosoph, J.M., Schmidt, L.S., Margosan, D.A. and Smilanick, J.L., 2007. Imazalil resistance linked to a unique insertion sequence in the PdCYP51 promoter region of Penicillium digitatum. Postharvest biology and technology, 44(1), 9-18. https://doi.org/10.1016/j.postharvbio.2006.11.008
  • Haegler, P., Joerin, L., Krähenbühl, S. and Bouitbir, J., 2017. Hepatocellular toxicity of imidazole and triazole antimycotic agents. Toxicological Sciences, 157(1), 183-195. https://doi.org/10.1093/toxsci/kfx029
  • Haverkate, F., Tempel, A. and Den Held, A.J., 1969. Interaction of 2, 4, 5-trichlorophenylsulphonylmethyl thiocyanate with fungal spores. Netherlands journal of plant pathology, 75, 308-315. https://doi.org/10.1007/BF02015493
  • Hersperger, F., Kastl, M., Paeschke, K., and Kierdorf, K., 2023. Hemocyte nuclei ısolation from adult Drosophila melanogaster for snRNA-seq. In Tissue-resident macrophages: Methods and Protocols (pp. 71-79). New York, NY: Springer US.
  • Huang, S., Huang, M., Tian, S., Meng, Z., Yan, S., Teng, M., ... and Zhu, W., 2022. Imazalil and its metabolite imazalil-M caused developmental toxicity in zebrafish (Danio rerio) embryos via cell apoptosis mediated by metabolic disorders. Pesticide Biochemistry and Physiology, 184, 105113. https://doi.org/10.1016/j.pestbp.2022.105113
  • Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., ... and Meister, M., 2005. New insights into Drosophila larval haemocyte functions through genome‐wide analysis. Cellular microbiology, 7(3), 335-350. https://doi.org/10.1111/j.1462-5822.2004.00462.x
  • Isin, S. and Yildirim, I., 2007. Fruit-growers’ perceptions on the harmful effects of pesticides and their reflection on practices: The case of Kemalpasa, Turkey. Crop protection, 26(7), 917-922. https://doi.org/10.1016/j.cropro.2006.08.006
  • Jeibmann, A. and Paulus, W., 2009. Drosophila melanogaster as a model organism of brain diseases. International Journal of Molecular Sciences, 10, 407-440. https://doi.org/10.3390/ijms10020407
  • Jin, C., Zhang, R., Fu, Z. and Jin, Y., 2019. Maternal exposure to imazalil disrupts the endocrine system in F1 generation mice. Molecular and cellular endocrinology, 486, 105-112. https://doi.org/10.1016/j.mce.2019.03.002
  • Kamal, A., Ahmad, F. and Shafeeque, M.A., 2020. Toxicity of pesticides to plants and non-target organism: A comprehensive review. Iranian Journal of Plant Physiology, 10, 3299-3313. https://doi.org/10.22034/ijpp.2020.1885628.1183
  • Kamel, F. and Hoppin, J.A., 2004. Association of pesticide exposure with neurologic dysfunction and disease. Environmental Health Perspectives, 112, 950-958. https://doi.org/10.1289/ehp.7135
  • Kaygısız, Ş.Y. and Ciğerci, İ.H., 2017. Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by SMART, Allium and comet assay. Toxicology and industrial health, 33(10), 802-809. https://doi.org/10.1177/0748233717722907
  • Kurşun, A.Y., Güneş, M., Yalçın, B., Ertuğrul, H. and Kaya, B., 2022. Bazı fungusitlerin genotoksik potansiyellerinin Drosophila smart ve komet yöntemleri ile araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26, 122-131. https://doi.org/10.19113/sdufenbed.984820
  • Kurşun, A.Y., Yalçın, B., Güneş, M., Tagorti, G. and Bülent, K., 2022. Drosophila melanogaster’in somatik hücrelerinde kobalt nanopartiküllerinin indüklediği genotoksisiteye karşı resveratrol’ün antigenotoksik etkisi. Eurasian Journal of Biological and Chemical Sciences, 5(2), 50-55. https://doi.org/10.46239/ejbcs.1069388
  • Kurşun, A.Y., Yalçın, B., Güneş, M. and Tagort T., 2021. MgO nanopartiküllerinin Drosophila melanogaster üzerindeki davranışsal toksisitesinin değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21, 1283-1294. https://doi.org/10.35414/akufemubid.931922
  • Lucas, J.A., Hawkins, N.J. and Fraaije, B.A., 2015. The evolution of fungicide resistance. Advances in applied microbiology, 90, 29-92. https://doi.org/10.1016/bs.aambs.2014.09.001
  • McKellar, C.E. and Wyttenbach, R.A., 2017. A protocol demonstrating 60 different Drosophila behaviors in one assay. Journal of Undergraduate Neuroscience Education, 15, A110.
  • Menegola, E., Broccia, M.L., Di Renzo, F. and Giavini, E., 2006. Dysmorphogenic effects of some fungicides derived from the imidazole on rat embryos cultured in vitro. Reproductive Toxicology, 21, 74-82. https://doi.org/10.1016/j.reprotox.2005.07.008
  • Nas, B., 2019. Nikel demir oksit nanopartikülünün genotoksisitesinin Drosophila melanogaster’de somatik mutasyon ve rekombinasyon testi (smart) ile araştırılması, Yüksek Lisans Tezi, Erzincan Binali Yıldırım Üniversitesi Fen Bilimleri Enstitüsü, Erzincan, 76.
  • Pereira, P.C.G., Soares, L.O.S., Júnior, S.F.S., Saggioro, E.M. and Correia, F.V., 2020. Sub-lethal effects of the pesticide imazalil on the earthworm Eisenia andrei: reproduction, cytotoxicity, and oxidative stress. Environmental Science and Pollution Research, 27, 33474-33485. https://doi.org/10.1007/s11356-019-05440-3
  • Pérez-Ortega, P., Lara-Ortega, F.J., Gilbert-López, B., Moreno-González, D., García-Reyes, J.F. and Molina-Díaz, A., 2017. Screening of over 600 pesticides, veterinary drugs, food-packaging contaminants, mycotoxins, and other chemicals in food by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS). Food Analytical Methods, 10, 1216-1244. https://doi.org/10.1007/s12161-016-0678-0
  • Schneider, E.P. and Dickert, K.J., 1994. Health costs and benefits of fungicide use in agricultur: a literature review. Journal of Agromedicine, 1, 19-37. https://doi.org/10.1300/J096v01n01_03
  • Schwarzbacherová, V., Šiviková, K., Drážovská, M. and Dianovský, J., 2015. Evaluation of DNA damage and cytotoxicity induced by triazole fungicide in cultured bovine lymphocytes. Caryologia, 68(3), 233-238. https://doi.org/10.1080/00087114.2015.1032613
  • Sheehan, D.J., Hitchcock, C.A. and Sibley, C.M., 1999. Current and emerging azole antifungal agents. Clinical microbiology reviews, 12(1), 40-79. https://doi.org/10.1128/cmr.12.1.40
  • Siegel, M.R. and Ragsdale, N.N., 1978. Antifungal mode of action of imazalil. Pesticide Biochemistry and Physiology, 9(1), 48-56. https://doi.org/10.1016/0048-3575(78)90063-9
  • Silva, A.M., Martins-Gomes, C., Ferreira, S.S., Souto, E.B. and Andreani, T., 2022. Molecular physicochemical properties of selected pesticides as predictive factors for oxidative stress and apoptosis-dependent cell death in Caco-2 and HepG2 cells. International Journal of Molecular Sciences, 23, 8107. https://doi.org/10.3390/ijms23158107
  • Spanó, M.A., Frei, H., Würgler, F.E. and Graf, U., 2001. Recombinagenic activity of four compounds in the standard and high bioactivation crosses of Drosophila melanogaster in the wing spot test. Mutagenesis, 16(5), 385-394. https://doi.org/10.1093/mutage/16.5.385
  • Şişman, T. and Türkez, H., 2010. Toxicologic evaluation of imazalil with particular reference to genotoxic and teratogenic potentials. Toxicology and industrial health, 26(10), 641-648. https://doi.org/10.1177/0748233710375951
  • Yalçın, B., 2017. MgO ve CeO2 nanopartiküllerinin ve iyonik formlarının genotoksik etkilerinin Drosophila smart testi ile araştırılması, Yüksek Lisans Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, 62.
  • Yu, J.W., Song, M.H., Keum, Y.S. and Lee, J.H., 2023. Metabolomic approach of azole fungicides in radish (Raphanus sativus): Perspective of functional metabolites. Journal of Hazardous Materials, 448, 130937. https://doi.org/10.1016/j.jhazmat.2023.130937

İmazalil'in Drosophila melanogaster’de Genotoksisite ve Davranışsal Toksisite Üzerine Etkilerinin Değerlendirilmesi i ve Davranışsal Toksisite Değerlendirmesi

Year 2024, , 476 - 484, 27.06.2024
https://doi.org/10.35414/akufemubid.1349951

Abstract

İmazalil (IMZ), sebze ve meyve tarlalarında birçok hastalığın önlenmesi ve hasat sonrası bozulmanın engellenmesi amacıyla yaygın olarak kullanılan bir imidazol ve triazol türevi fungisittir. Bu çalışmada, farklı konsantrasyonlardaki (0.25, 1, 4.5 mM) IMZ'nin Drosophila melanogaster üzerindeki genotoksik potansiyeli Somatik Mutasyon ve Rekombinasyon (SMART) ve Tek Hücreli Jel Elektroforez (Comet) Testleri kullanılarak incelenmiştir. Aynı IMZ konsantrasyonlarının D. melanogaster’de davranışsal toksisiteye etkisi de araştırılmıştır. Larva ağırlığı, sürünme ve pupa oluşum başarısı davranışsal toksisiteyi belirlemek için gerçekleştirilmiştir. Çalışma sonucunda, IMZ'nin genel olarak D. melanogaster üzerinde olumsuz etkilere neden olduğu belirlenmiştir. SMART testinde, tüm IMZ konsantrasyonu uygulamalarının elde edilen bireylerin kanat preparasyonları arasındaki farkların negatif kontrolle istatistiksel olarak anlamlı olmadığı bulunmuştur. IMZ tarafından DNA'ya verilen hasar, Comet testi ile belirlenmiş, 1 ve 4.5 mM’lık dozlarda istatistiksel olarak DNA hasar skorlarında anlamlı bir artış gözlenmiştir. IMZ'nin D. melanogaster üzerinde yapılan sürünme deneyinde kontrol grubuna kıyasla doz artışına bağlı olarak hareket kabiliyetinde azalma meydana gelmiş ve bu değişiklikler tüm uygulama dozlarında istatistiksel olarak anlamlı bulunmuştur. Larva ağırlığındaki değişiklikler ise istatistiksel olarak anlamlı bulunmamıştır. Pupa oluşum başarısı deneyinde ise 1 ve 4.5 mM’lık dozlardaki azalış istatistiksel olarak anlamlı bulunmuştur.

References

  • Akdoğan, A., Divrikli, Ü. and Latif, E., 2012. Pestisitlerin önemi ve ekosisteme etkileri. Akademik Gıda, 10, 125-132.
  • Altieri, G., Di Renzo, G.C., Genovese, F., Calandra, M. and Strano, M.C., 2013. A new method for the postharvest application of imazalil fungicide to citrus fruit. Biosystems Engineering, 115, 434-443. https://doi.org/10.1016/j.biosystemseng.2013.04.008
  • Alvarez-Perez, S., de Vega, C., Pozo, M.I., Lenaerts, M., Van Assche, A., Herrera, C.M., ... and Lievens, B., 2016. Nectar yeasts of the Metschnikowia clade are highly susceptible to azole antifungals widely used in medicine and agriculture. FEMS Yeast Research, 16(1), fov115. https://doi.org/10.1093/femsyr/fov115
  • Amkiss, S., Dalouh, A., and Idaomar, M., 2021. Chemical composition, genotoxicity and antigenotoxicity study of Artemisia herba-alba using the eye and wing SMART assay of Drosophila melanogaster. Arabian Journal of Chemistry, 14, 102976. https://doi.org/10.1016/j.arabjc.2020.102976
  • Anushree, A., Ali, M.Z., Bilgrami, A.L., and Ahsan, J., 2023. Acute exposure to arsenic affects pupal development and neurological functions in Drosophila melanogaster. Toxics, 11(4), 327. https://doi.org/10.3390/toxics11040327
  • Aşkın, H., and Uysal, H., 2010. Drosophila melanogaster’de glisitein ve koumestrolün genotoksik etkilerinin somatik mutasyon ve rekombinasyon testi ile belirlenmesi. TÜBAV Bilim Dergisi, 3(3), 264-270.
  • Bianchini, M.C., Gularte, C.O.A., Nogara, P.A., Krum, B.N., Gayer, M.C., Bridi, J.C., ... and Puntel, R.L., 2019. Thimerosal inhibits Drosophila melanogaster tyrosine hydroxylase (Dm TyrH) leading to changes in dopamine levels and impaired motor behavior: implications for neurotoxicity. Metallomics, 11(2), 362-374. https://doi.org/10.1039/c8mt00268a
  • Calap-Quintana, P., González-Fernández, J., Sebastiá-Ortega, N., Llorens, J.V. and Moltó, M.D., 2017. Drosophila melanogaster models of metal-related human diseases and metal toxicity. International journal of molecular sciences, 18(7), 1456. https://doi.org/10.3390/ijms18071456
  • Carmona, E.R., Guecheva, T.N., Creus, A. and Marcos, R., 2010. Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. Environmental and Molecular Mutagenesis, 52, 165–169. https://doi.org/10.1002/em.20604
  • Ciğerci, İ.H., Liman, R., İstifli, E.S., Akyıl, D., Özkara, A., Bonciu, E. and Colă, F., 2023. Cyto-Genotoxic and Behavioral Effects of Flubendiamide in Allium cepa Root Cells, Drosophila melanogaster and Molecular Docking Studies. International Journal of Molecular Sciences, 24(2),1565. https://doi.org/10.3390/ijms24021565
  • Çalı, İ.Ö. and Kesercioğlu, T., 2010. Effects of Fosetyl-Al, a fungicide on meiosis of Lycopersicon esculentum Mill. Bangladesh Journal of Botany, 39, 237-240. https://doi.org/10.3329/bjb.v39i2.7486
  • Çıldır, D.S. and Liman, R., 2020. Cytogenetic and genotoxic assessment in Allium cepa exposed to imazalil fungicide, Environmental Science and Pollution Research, 27, 20335-20343. https://doi.org/10.1007/s11356-020-08553-2
  • Dayanıklı, S., 2014. Gıda katkı maddesi ferrolaktat (e585)'ın Drosophila melanogaster'de yaptığı genotoksik etkilerin smart testi ve comet assay yöntemiyle belirlenmesi, Yüksek Lisans Tezi, Trakya Üniversitesi Fen Bilimleri Enstitüsü, Edirne, 123.
  • Farag, A.T. and İbrahim, H.H., 2007. Developmental toxic effects of antifungal flusilazole administered by gavage to mic. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 80, 12-17. https://doi.org/10.1002/bdrb.20098
  • Fauzi, A., Zubaidah, S., and Susanto, H., 2020. The study of larva and adult behavior of Drosophila melanogaster: Do strains affect behavior?. AIP Conference Proceedings, 1, 2231. https://doi.org/10.1063/5.0002429
  • Gajski, G., Ravlić, S., Godschalk, R., Collins, A., Dusinska, M., and Brunborg, G., 2021. Application of the comet assay for the evaluation of DNA damage in mature sperm. Mutation Research/Reviews in Mutation Research, 788, 108398. https://doi.org/10.1016/j.mrrev.2021.108398
  • Ghosoph, J.M., Schmidt, L.S., Margosan, D.A. and Smilanick, J.L., 2007. Imazalil resistance linked to a unique insertion sequence in the PdCYP51 promoter region of Penicillium digitatum. Postharvest biology and technology, 44(1), 9-18. https://doi.org/10.1016/j.postharvbio.2006.11.008
  • Haegler, P., Joerin, L., Krähenbühl, S. and Bouitbir, J., 2017. Hepatocellular toxicity of imidazole and triazole antimycotic agents. Toxicological Sciences, 157(1), 183-195. https://doi.org/10.1093/toxsci/kfx029
  • Haverkate, F., Tempel, A. and Den Held, A.J., 1969. Interaction of 2, 4, 5-trichlorophenylsulphonylmethyl thiocyanate with fungal spores. Netherlands journal of plant pathology, 75, 308-315. https://doi.org/10.1007/BF02015493
  • Hersperger, F., Kastl, M., Paeschke, K., and Kierdorf, K., 2023. Hemocyte nuclei ısolation from adult Drosophila melanogaster for snRNA-seq. In Tissue-resident macrophages: Methods and Protocols (pp. 71-79). New York, NY: Springer US.
  • Huang, S., Huang, M., Tian, S., Meng, Z., Yan, S., Teng, M., ... and Zhu, W., 2022. Imazalil and its metabolite imazalil-M caused developmental toxicity in zebrafish (Danio rerio) embryos via cell apoptosis mediated by metabolic disorders. Pesticide Biochemistry and Physiology, 184, 105113. https://doi.org/10.1016/j.pestbp.2022.105113
  • Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., ... and Meister, M., 2005. New insights into Drosophila larval haemocyte functions through genome‐wide analysis. Cellular microbiology, 7(3), 335-350. https://doi.org/10.1111/j.1462-5822.2004.00462.x
  • Isin, S. and Yildirim, I., 2007. Fruit-growers’ perceptions on the harmful effects of pesticides and their reflection on practices: The case of Kemalpasa, Turkey. Crop protection, 26(7), 917-922. https://doi.org/10.1016/j.cropro.2006.08.006
  • Jeibmann, A. and Paulus, W., 2009. Drosophila melanogaster as a model organism of brain diseases. International Journal of Molecular Sciences, 10, 407-440. https://doi.org/10.3390/ijms10020407
  • Jin, C., Zhang, R., Fu, Z. and Jin, Y., 2019. Maternal exposure to imazalil disrupts the endocrine system in F1 generation mice. Molecular and cellular endocrinology, 486, 105-112. https://doi.org/10.1016/j.mce.2019.03.002
  • Kamal, A., Ahmad, F. and Shafeeque, M.A., 2020. Toxicity of pesticides to plants and non-target organism: A comprehensive review. Iranian Journal of Plant Physiology, 10, 3299-3313. https://doi.org/10.22034/ijpp.2020.1885628.1183
  • Kamel, F. and Hoppin, J.A., 2004. Association of pesticide exposure with neurologic dysfunction and disease. Environmental Health Perspectives, 112, 950-958. https://doi.org/10.1289/ehp.7135
  • Kaygısız, Ş.Y. and Ciğerci, İ.H., 2017. Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by SMART, Allium and comet assay. Toxicology and industrial health, 33(10), 802-809. https://doi.org/10.1177/0748233717722907
  • Kurşun, A.Y., Güneş, M., Yalçın, B., Ertuğrul, H. and Kaya, B., 2022. Bazı fungusitlerin genotoksik potansiyellerinin Drosophila smart ve komet yöntemleri ile araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26, 122-131. https://doi.org/10.19113/sdufenbed.984820
  • Kurşun, A.Y., Yalçın, B., Güneş, M., Tagorti, G. and Bülent, K., 2022. Drosophila melanogaster’in somatik hücrelerinde kobalt nanopartiküllerinin indüklediği genotoksisiteye karşı resveratrol’ün antigenotoksik etkisi. Eurasian Journal of Biological and Chemical Sciences, 5(2), 50-55. https://doi.org/10.46239/ejbcs.1069388
  • Kurşun, A.Y., Yalçın, B., Güneş, M. and Tagort T., 2021. MgO nanopartiküllerinin Drosophila melanogaster üzerindeki davranışsal toksisitesinin değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21, 1283-1294. https://doi.org/10.35414/akufemubid.931922
  • Lucas, J.A., Hawkins, N.J. and Fraaije, B.A., 2015. The evolution of fungicide resistance. Advances in applied microbiology, 90, 29-92. https://doi.org/10.1016/bs.aambs.2014.09.001
  • McKellar, C.E. and Wyttenbach, R.A., 2017. A protocol demonstrating 60 different Drosophila behaviors in one assay. Journal of Undergraduate Neuroscience Education, 15, A110.
  • Menegola, E., Broccia, M.L., Di Renzo, F. and Giavini, E., 2006. Dysmorphogenic effects of some fungicides derived from the imidazole on rat embryos cultured in vitro. Reproductive Toxicology, 21, 74-82. https://doi.org/10.1016/j.reprotox.2005.07.008
  • Nas, B., 2019. Nikel demir oksit nanopartikülünün genotoksisitesinin Drosophila melanogaster’de somatik mutasyon ve rekombinasyon testi (smart) ile araştırılması, Yüksek Lisans Tezi, Erzincan Binali Yıldırım Üniversitesi Fen Bilimleri Enstitüsü, Erzincan, 76.
  • Pereira, P.C.G., Soares, L.O.S., Júnior, S.F.S., Saggioro, E.M. and Correia, F.V., 2020. Sub-lethal effects of the pesticide imazalil on the earthworm Eisenia andrei: reproduction, cytotoxicity, and oxidative stress. Environmental Science and Pollution Research, 27, 33474-33485. https://doi.org/10.1007/s11356-019-05440-3
  • Pérez-Ortega, P., Lara-Ortega, F.J., Gilbert-López, B., Moreno-González, D., García-Reyes, J.F. and Molina-Díaz, A., 2017. Screening of over 600 pesticides, veterinary drugs, food-packaging contaminants, mycotoxins, and other chemicals in food by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS). Food Analytical Methods, 10, 1216-1244. https://doi.org/10.1007/s12161-016-0678-0
  • Schneider, E.P. and Dickert, K.J., 1994. Health costs and benefits of fungicide use in agricultur: a literature review. Journal of Agromedicine, 1, 19-37. https://doi.org/10.1300/J096v01n01_03
  • Schwarzbacherová, V., Šiviková, K., Drážovská, M. and Dianovský, J., 2015. Evaluation of DNA damage and cytotoxicity induced by triazole fungicide in cultured bovine lymphocytes. Caryologia, 68(3), 233-238. https://doi.org/10.1080/00087114.2015.1032613
  • Sheehan, D.J., Hitchcock, C.A. and Sibley, C.M., 1999. Current and emerging azole antifungal agents. Clinical microbiology reviews, 12(1), 40-79. https://doi.org/10.1128/cmr.12.1.40
  • Siegel, M.R. and Ragsdale, N.N., 1978. Antifungal mode of action of imazalil. Pesticide Biochemistry and Physiology, 9(1), 48-56. https://doi.org/10.1016/0048-3575(78)90063-9
  • Silva, A.M., Martins-Gomes, C., Ferreira, S.S., Souto, E.B. and Andreani, T., 2022. Molecular physicochemical properties of selected pesticides as predictive factors for oxidative stress and apoptosis-dependent cell death in Caco-2 and HepG2 cells. International Journal of Molecular Sciences, 23, 8107. https://doi.org/10.3390/ijms23158107
  • Spanó, M.A., Frei, H., Würgler, F.E. and Graf, U., 2001. Recombinagenic activity of four compounds in the standard and high bioactivation crosses of Drosophila melanogaster in the wing spot test. Mutagenesis, 16(5), 385-394. https://doi.org/10.1093/mutage/16.5.385
  • Şişman, T. and Türkez, H., 2010. Toxicologic evaluation of imazalil with particular reference to genotoxic and teratogenic potentials. Toxicology and industrial health, 26(10), 641-648. https://doi.org/10.1177/0748233710375951
  • Yalçın, B., 2017. MgO ve CeO2 nanopartiküllerinin ve iyonik formlarının genotoksik etkilerinin Drosophila smart testi ile araştırılması, Yüksek Lisans Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, 62.
  • Yu, J.W., Song, M.H., Keum, Y.S. and Lee, J.H., 2023. Metabolomic approach of azole fungicides in radish (Raphanus sativus): Perspective of functional metabolites. Journal of Hazardous Materials, 448, 130937. https://doi.org/10.1016/j.jhazmat.2023.130937
There are 46 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Sezin Özdemir 0009-0006-4126-1356

Mehmet Furkan Çilek 0009-0001-5173-3074

Selcan Girgin 0009-0003-6536-2387

Özkan Şeşen 0009-0003-3716-1799

Dilek Akyıl 0000-0002-7048-3808

Arzu Özkara 0000-0002-7815-5366

İbrahim Hakkı Ciğerci 0000-0002-3626-7730

Early Pub Date June 8, 2024
Publication Date June 27, 2024
Submission Date August 25, 2023
Published in Issue Year 2024

Cite

APA Özdemir, S., Çilek, M. F., Girgin, S., Şeşen, Ö., et al. (2024). Evaluation of the Effects of Imazalil on Genotoxicity and Behavioral Toxicity in Drosophila melanogaster. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(3), 476-484. https://doi.org/10.35414/akufemubid.1349951
AMA Özdemir S, Çilek MF, Girgin S, Şeşen Ö, Akyıl D, Özkara A, Ciğerci İH. Evaluation of the Effects of Imazalil on Genotoxicity and Behavioral Toxicity in Drosophila melanogaster. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2024;24(3):476-484. doi:10.35414/akufemubid.1349951
Chicago Özdemir, Sezin, Mehmet Furkan Çilek, Selcan Girgin, Özkan Şeşen, Dilek Akyıl, Arzu Özkara, and İbrahim Hakkı Ciğerci. “Evaluation of the Effects of Imazalil on Genotoxicity and Behavioral Toxicity in Drosophila Melanogaster”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 3 (June 2024): 476-84. https://doi.org/10.35414/akufemubid.1349951.
EndNote Özdemir S, Çilek MF, Girgin S, Şeşen Ö, Akyıl D, Özkara A, Ciğerci İH (June 1, 2024) Evaluation of the Effects of Imazalil on Genotoxicity and Behavioral Toxicity in Drosophila melanogaster. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 3 476–484.
IEEE S. Özdemir, M. F. Çilek, S. Girgin, Ö. Şeşen, D. Akyıl, A. Özkara, and İ. H. Ciğerci, “Evaluation of the Effects of Imazalil on Genotoxicity and Behavioral Toxicity in Drosophila melanogaster”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, pp. 476–484, 2024, doi: 10.35414/akufemubid.1349951.
ISNAD Özdemir, Sezin et al. “Evaluation of the Effects of Imazalil on Genotoxicity and Behavioral Toxicity in Drosophila Melanogaster”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/3 (June 2024), 476-484. https://doi.org/10.35414/akufemubid.1349951.
JAMA Özdemir S, Çilek MF, Girgin S, Şeşen Ö, Akyıl D, Özkara A, Ciğerci İH. Evaluation of the Effects of Imazalil on Genotoxicity and Behavioral Toxicity in Drosophila melanogaster. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:476–484.
MLA Özdemir, Sezin et al. “Evaluation of the Effects of Imazalil on Genotoxicity and Behavioral Toxicity in Drosophila Melanogaster”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, 2024, pp. 476-84, doi:10.35414/akufemubid.1349951.
Vancouver Özdemir S, Çilek MF, Girgin S, Şeşen Ö, Akyıl D, Özkara A, Ciğerci İH. Evaluation of the Effects of Imazalil on Genotoxicity and Behavioral Toxicity in Drosophila melanogaster. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(3):476-84.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.