Synthesis and Characterization of Clinoptilolite Doped Hydroxyapatite
Year 2024,
, 414 - 423, 29.04.2024
Fatma Zehra Kocak
,
Nilüfer Küçükdeveci
,
Esma Daldiken
Abstract
Hydroxyapatite (HA) which is a calcium phosphate based, main inorganic component of the bone tissue, is commonly used as scaffold or filler material in bone repair owing to its high biocompatibility and biomimetic structure. However, due to high stability of pure HA, its low resorbability extends the recovery time of tissues. Therefore, various studies have been carried out towards enrichment of HA with different ionic or mineral additives. In this study, clinoptilolite (CLP) mineral which is a type of zeolite being rich in silicon was added into stoichiometric HA during its production by sol-gel method. By investigating the synthesis of CLP (5%) doped HA, it was characterized comparatively with pure HA and natural CLP. The HA+5% CLP compound comprising biomimetic ions were obtained in the shape of nano-rods resembling to bioapatite. The CLP additive to HA influenced slight decrease of the mean particle size and porosity. The biological tests have indicated that all samples were biocompatible with Saos-2 cells and HA+5% CLP compound had the highest biocompatibility. Being biomimetic by the content, nano-rod shape and porous structure, HA+5% CLP compound produced by sol-gel method might be considered potential candidate as a bone filler material to induce bone regeneration which could be supported by further studies.
References
- Arun Kumar, R., Sivashanmugam, A., Deepthi, S., Iseki, S., Chennazhi, K. P., Nair, S. V., Jayakumar, R. 2015. Injectable chitin-poly(ε-caprolactone) /nanohydroxyapatite composite microgels prepared by simple regeneration technique for bone tissue engineering. ACS Applied Materials and Interfaces, 7(18), 9399–9409.
https://doi.org/10.1021/acsami.5b02685
- Bang, L. T., Long, B. D., Othman, R. 2014. Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: Synthesis, mechanical properties, and solubility evaluations. The Scientific World Journal, 87, 788–796
https://doi.org/10.1155/2014/969876
- Barbosa, G. P., Debone, H. S., Severino, P., Souto, E. B., Da Silva, C. F. 2016. Design and characterization of chitosan/zeolite composite films - Effect of zeolite type and zeolite dose on the film properties. Materials Science and Engineering C, 60, 246–254.
https://doi.org/10.1016/j.msec.2015.11.034
- Darr, J. a, Guo, Z. X., Raman, V., Bououdina, M., Rehman, I. U. 2004. Metal organic chemical vapour deposition (MOCVD) of bone mineral like carbonated hydroxyapatite coatings. Chemical communications, 6, 696–697.
https://doi.org/10.1039/B312855P
- Dau, M., Ganz, C., Zaage, F., Staedt, H., Goetze, E., Gerber, T., Kämmerer, P. W. 2020. In vivo comparison of a granular and putty form of a sintered and a non-sintered silica-enhanced hydroxyapatite bone substitute material. Journal of Biomaterials Applications, 34(6), 864–874.
https://doi.org/10.1177/0885328219877584.
- De Carvalho, B., Rompen, E., Lecloux, G., Schupbach, P., Dory, E., Art, J. F., Lambert, F. 2019. Effect of sintering on in vivo biological performance of chemically deproteinized bovine hydroxyapatite. Materials, 12(23), 3946.
https://doi:10.3390/ma12233946
- Dosa, M., Grifasi, N., Galletti, C., Fino, D., Piumetti, M. 2022. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. Materials, 15(22), 8191.
https://doi.org/10.3390/ma15228191
- Erdoǧan, B., Sakizci, M., Yörükoǧullari, E. 2008. Characterization and ethylene adsorption of natural and modified clinoptilolites. Applied Surface Science, 254(8), 2450–2457.
https://doi.org/10.1016/j.apsusc.2007.09.058
- Galletti, C., Dosa, M., Russo, N., Fino, D. 2021. Zn2+ and Cd2+ removal from wastewater using clinoptilolite as adsorbent. Environmental Science and Pollution Research, 28(19), 24355–24361.
https://doi.org/10.1007/s11356-020-08483-z
- Garcia-Basabe, Y., Rodriguez-Iznaga, I., De Menorval, L. C., Llewellyn, P., Maurin, G., Lewis, D. W., … Ruiz-Salvador, A. R. 2010. Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization. Microporous and Mesoporous Materials, 135(1–3), 187–196.
https://doi.org/10.1016/j.micromeso.2010.07.008
- Granito, R. N., Renno, A. C. M., Yamamura, H., de Almeida, M. C., Ruiz, P. L. M., Ribeiro, D. A. 2018. Hydroxyapatite from fish for bone tissue engineering: A promising approach. International Journal of Molecular and Cellular Medicine, 7(2), 80–90.
https://doi.org/10.22088/IJMCM.BUMS.7.2.80.
- Higashi, S., Yamamuro, T., Nakamura, T., Ikada, Y., Hyon, S. H., Jamshidi, K. 1986. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials, 7(3), 183–187.
https://doi.org/10.1016/0142-9612(86)90099-2
- Iqbal, N., Abdul Kadir, M. R., Iqbal, S., Razak, S. I. A., Shahid Rafique, M., Bakhsheshi-Rad, H. R., … Abbas, A. A. 2016. Nano-hydroxyapatite reinforced zeolite ZSM composites: A comprehensive study on the structural and in vitro biological properties. Ceramics International, 42(6), 7175–7182.
https://doi.org/10.1016/j.ceramint.2016.01.107
- Iqbal, N., Abdul Kadir, M. R., Mahmood, N. H. Bin, Yusoff, M. F. M., Siddique, J. A., Salim, N., … Kamarul, T. 2014. Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite-hydroxyapatite (Zeo-HA) composite for bone tissue engineering applications. Ceramics International, 40(10), 16091–16097.
https://doi.org/10.1016/j.ceramint.2014.07.038
- Jagadale, P. N., Jagtap, P. P., Joshi, M. G., Bamane, S. R. 2016. A prototype synthesis and characterization of hydroxyapatite bioceramics nanocrystallites. Advanced Materials Letters, 7(4), 325–329.
https://doi.org/10.5185/amlett.2016.5837.
- Juhasz, J. A., Best, S. M. 2012. Bioactive ceramics: processing, structures and properties. Journal of Materials Science, 47(2), 610–624.
https://doi.org/10.1007/s10853-011-6063-x
- Kalkandelen, C., Gunduz, O., Akan, A., Oktar, F. N. 2017. "Part 1: Clinoptilolite-alumina-hydroxyapatite composites for biomedical engineering. Journal of the Australian Ceramic Society, 53(1), 91–99.
https://doi.org/10.1007/s41779-016-0013-7
- Kalkandelen, C., Suleymanoglu, M., Kuruca, S. E., Akan, A., Oktar, F. N., Gunduz, O. 2017. "Part 2: Biocompatibility evaluation of hydroxyapatite-based clinoptilolite and Al2O3 composites. Journal of the Australian Ceramic Society, 53(1), 217–223.
https://doi.org/10.1007/s41779-017-0027-9
- Kannan, S., Lemos, A. F., Ferreira, J. M. F. 2006. Synthesis and Mechanical Performance of Biological-like Hydroxyapatites. Chemistry of Materials, 18(8), 2181–2186.
https://doi.org/10.1021/cm052567q
- Karacayli, U., Gunduz, O., Salman, S., Ozyegin, L. S., Agathopoulos, S., Sengil, A. Z., OktaR, F. N. 2010. Effect of sintering temperature on mechanical properties and microstructure of zeolite (clinoptilolite) reinforced bovine hydroxyapatite (BHA) composites, R. M. Natal Jorge, S. M. Santos, l R. S. João Manue, R. C. Tavares, & M. A. P. Vaz (Ed.), Biodental Engineering. London: Taylor & Francis Group, 105–108
- Khan, A. F., Awais, M., Khan, A. S., Tabassum, S., Chaudhry, A. A., Rehman, I. U. 2013. Raman Spectroscopy of Natural Bone and Synthetic Apatites. Applied Spectroscopy Reviews, 48(4), 329–355.
https://doi.org/10.1080/05704928.2012.721107
- Kocaaga, B., Kurkcuoglu, O., Tatlier, M., Batirel, S., Guner, F. S. 2019. Low-methoxyl pectin–zeolite hydrogels controlling drug release promote in vitro wound healing. Journal of Applied Polymer Science, 136(24), 1–16.
https://doi.org/10.1002/app.47640
- Koçak, F. Z., Küçükdeveci, N., Daldiken, E. 2022. Zeolitlerin Özellikleri ve Doku Mühendisliği Uygulamaları. Nevşehir Bilim ve Teknoloji Dergisi, 11(2), 8–15.
https://doi.org/10.17100/nevbiltek.1178348
- Kocak, F. Z., Yar, M., Rehman, I. U. 2022a. Hydroxyapatite-Integrated, Heparin- and Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance. International Journal of Molecular Sciences, 23(10), 53–70.
https://doi.org/10.3390/ijms23105370.
- Kocak, F. Z., Yar, M., Rehman, I. U. (2022b). Investigation of Different Synthesis Parameters of Hydroxyapatite For Tissue Engineering Applications. The Sixth International Symposium on Pharmaceutical and Biomedical Sciences (ISPBS-6), Gaziantep, Turkey, 121–126.
- Landi, E., Tampieri, A., Mattioli-Belmonte, M., Celotti, G., Sandri, M., Gigante, A., … Biagini, G. 2006. Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. Journal of the European Ceramic Society, 26(13), 2593–2601.
https://doi.org/10.1016/j.jeurceramsoc.2005.06.040
- Liu, Q., Huang, S., Matinlinna, J. P., Chen, Z., Pan, H. 2013. Insight into biological apatite: Physiochemical properties and preparation approaches. BioMed Research International, 2013, 1-13.
https://doi.org/10.1155/2013/929748
- Lu, H. H., El-Amin, S. F., Scott, K. D., Laurencin, C. T. 2003. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Journal of Biomedical Materials Research - Part A, 64(3), 465–474.
https://doi.org/10.1002/jbm.a.10399.
- Mansouri, N., Rikhtegar, N., Ahmad Panahi, H., Atabi, F., Shahraki, B. K. 2013. Porosity, characterization and structural properties of natural zeolite - Clinoptilolite - As a sorbent. Environment Protection Engineering, 39(1), 139–152.
https://doi.org/10.5277/EPE130111
- Matsumoto, T., Okazaki, M., Inoue, M., Yamaguchi, S., Kusunose, T., Toyonaga, T., … Takahashi, J. 2004. Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials, 25(17), 3807–3812.
https://doi.org/10.1016/j.biomaterials.2003.10.081
- Ninan, N., Muthiah, M., Park, I. K., Elain, A., Wong, T. W., Thomas, S., Grohens, Y. 2013. Faujasites incorporated tissue engineering scaffolds for wound healing: In vitro and in vivo analysis. ACS Applied Materials and Interfaces, 5(21), 11194–11206.
https://doi.org/10.1021/am403436y.
- Panda, S., Biswas, C. K., Paul, S. 2021. A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering. Ceramics International, 47(20), 28122–28144.
https://doi.org/10.1016/j.ceramint.2021.07.100
- Pavelić, K., Hadžija, M., Bedrica, L., Pavelić, J., Crossed D signikić, I., Katić, M., … Čolić, M. 2000. Natural zeolite clinoptilolite: New adjuvant in anticancer therapy. Journal of Molecular Medicine, 78(12), 708–720.
https://doi.org/10.1007/s001090000176
- Pietak, A. M., Reid, J. W., Stott, M. J., Sayer, M. 2007. Silicon substitution in the calcium phosphate bioceramics. Biomaterials, 28(28), 4023–4032.
https://doi.org/10.1016/j.biomaterials.2007.05.003
- Puszka, A., Kneć, M., Franus, W., Podkościelna, B. 2023. Preparation and Thermo-Mechanical Characteristics of Composites Based on Epoxy Resin with Kaolinite and Clinoptilolite. Polymers, 15(8) 1898.
https://doi.org/10.3390/polym15081898
- Rehman, I., Bonfield, W. 1997. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. Journal of Materials Science: Materials in Medicine, 8(1), 1–4.
https://doi.org/10.1023/a:1018570213546
- Rodríguez-Fuentes, G., Ruiz-Salvador, A. R., Mir, M., Picazo, O., Quintana, G., Delgado, M. 1998. Thermal and cation influence on IR vibrations of modified natural clinoptilolite. Microporous and Mesoporous Materials, 20(4–6), 269–281.
https://doi.org/10.1016/S1387-1811(97)00013-9
- Sadeghinia, A., Soltani, S., Aghazadeh, M., Khalilifard, J., Davaran, S. 2020. Design and fabrication of clinoptilolite–nanohydroxyapatite/chitosan–gelatin composite scaffold and evaluation of its effects on bone tissue engineering. Journal of Biomedical Materials Research - Part A, 108(2), 221–233.
https://doi.org/10.1002/jbm.a.36806
- Sahin, M. B. 2014. Zeoli̇tler. MTA Doğal Kaynaklar ve Ekonomi Bülteni, 17, 53–60.
- Schiavo, L., Boccia, V., Aversa, L., Verucchi, R., Carotenuto, G., Valente, T. 2023. Natural Clinoptilolite Nanoplatelets Production by a Friction-Based Technology. Materials prooceedings, 14(1), 11.
https://doi.org/10.3390/IOCN2023-14474
- Serati-Nouri, H., Jafari, A., Roshangar, L., Dadashpour, M., Pilehvar-Soltanahmadi, Y., Zarghami, N. 2020. Biomedical applications of zeolite-based materials: A review. Materials Science and Engineering C, 116, 111225.
https://doi.org/10.1016/j.msec.2020.111225
- Servatan, M., Zarrintaj, P., Mahmodi, G., Kim, S. J., Ganjali, M. R., Saeb, M. R., Mozafari, M. 2020. Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discovery Today, 25(4), 642–656.
https://doi.org/10.1016/j.drudis.2020.02.005
- Shumskaya, L. G., Kirillova, Y. A., Yusupov, T. S. 1999. Controlled changes in technological properties of phosphates in mechanical activation with zeolites. Journal of Mining Science, 35(1), 96–100.
- Singh, J., Chatha, S. S., Singh, H. 2021. Characterization and corrosion behavior of plasma sprayed calcium silicate reinforced hydroxyapatite composite coatings for medical implant applications. Ceramics International, 47(1), 782–792.
https://doi.org/10.1016/j.ceramint.2020.08.189
- Tok, S. 2009. Doğal Zeolit (Klinoptilolit) ile Bakır Adsorpsiyonu. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Istanbul, 62.
- Wang, S., Peng, Y. 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11–24.
https://doi.org/10.1016/j.cej.2009.10.029
- Watanabe, Y., Ikoma, T., Suetsugu, Y., Yamada, H., Tamura, K., Komatsu, Y., … Moriyoshi, Y. 2006. Type-A zeolites with hydroxyapatite surface layers formed by an ion exchange reaction. Journal of the European Ceramic Society, 26(4–5), 469–474.
https://doi.org/10.1016/j.jeurceramsoc.2005.07.024
- Yazdanian, M., Tabesh, H., Houshmand, B., Tebyanian, H., Soufdoost, R. S., Tahmasebi, E., … Ghullame, S. 2020. Fabrication and properties of βTCP/Zeolite/Gelatin scaffold as developed scaffold in bone regeneration: in vitro and in vivo studies. Biocybernetics and Biomedical Engineering, 40(4), 1626–1637.
https://doi.org/10.1016/j.bbe.2020.10.006
- Zarrintaj, P., Mahmodi, G., Manouchehri, S., Mashhadzadeh, A. H., Khodadadi, M., Servatan, M., … Mozafari, M. 2020. Zeolite in tissue engineering: Opportunities and challenges. MedComm, 1(1), 5–34.
https://doi.org/10.1002/mco2.5
- Zhan, Y., Lin, J., Li, J. 2013. Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper(II). Environmental Science and Pollution Research, 20(4), 2512–2526.
https://doi.org/10.1007/s11356-012-1136-1
Klinoptilolit Katkılı Hidroksiapatitin Sentezi ve Karakterizasyonu
Year 2024,
, 414 - 423, 29.04.2024
Fatma Zehra Kocak
,
Nilüfer Küçükdeveci
,
Esma Daldiken
Abstract
Kemik dokusunun temel inorganik bileşeni olan kalsiyum fosfat temelli hidroksiapatit (HA) bileşiği, yüksek biyouyumluluğu ve biyomimetik yapısı sayesinde kemik doku onarımında skafold ve dolgu malzemesi olarak yaygın bir şekilde kullanılmaktadır. Ancak saf HA’nın yüksek stabilitesi nedeniyle vücutta çözünürlüğünün düşük olması dokuların iyileşme sürecini uzatmaktadır. Bu nedenle, hidroksiapatiti farklı iyonik katkılarla ya da minerallerle zenginleştirme yönünde çeşitli araştırmalar gerçekleştirilmektedir. Bu çalışmada silisyum bakımından zengin bir zeolit türü olan klinoptilolit (CLP) mineralinin saf HA’ya katkı olarak stokiyometrik HA’nın sol-jel yöntemiyle üretimi sırasında eklendiği bileşimler araştırılmıştır. %5 oranında CLP katkılı HA’nın sentezi araştırılarak saf HA ve doğal CLP ile karşılaştırmalı olarak karakterize edilmiştir. Biyomimetik iyon içerikli HA+%5 CLP bileşikleri biyoapatit yapısına benzer nano-çubuk şekilde poroz bir morfolojide elde edilmiştir. HA’ya CLP katkısı ortalama partikül boyutunu ve porozite miktarını bir miktar düşürmüştür. Biyolojik testler, tüm numunelerin Saos-2 hücresi ile biyouyumlu olduğunu ve CLP katkılı HA bileşiğinin en yüksek biyouyumluluğa sahip olduğu göstermiştir. Sol-jel yöntemi ile üretilen nano-çubuksu şekli, içeriği ve poroz yapısı nedeniyle biyomimetik HA+%5CLP bileşiminin, ileriki çalışmalarla desteklenebilecek, kemik yenilenmesini teşvik edici potansiyel bir kemik dolgu malzemesi olabileceği düşünülmektedir.
Ethical Statement
Destekleyici kurumun bu çalışmanın kurgusu, yazımı ve yayınlanması konusunda herhangi bir etkisi olmamıştır.
Supporting Institution
Bu çalışma Nevşehir Hacı Bektaş Veli Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince Desteklenmiştir. Proje Numarası: KBP22F01.
Thanks
Biyouyumluluk analizlerinin gerçekleştirildiği Eskişehir Osman Gazi Üniversitesi Merkezi Araştırma Laboratuvarı – ARUM birimine ve Saos-2 hücre hattını sağlayan Dr. Öğr Üyesi Mine Toker’e çok teşekkür ederiz. Ayrıca doğal klinoptilolit örnek numunesini sağlayan Rota Madencilik (Manisa, Türkiye) Firmasına teşekkür ederiz.
References
- Arun Kumar, R., Sivashanmugam, A., Deepthi, S., Iseki, S., Chennazhi, K. P., Nair, S. V., Jayakumar, R. 2015. Injectable chitin-poly(ε-caprolactone) /nanohydroxyapatite composite microgels prepared by simple regeneration technique for bone tissue engineering. ACS Applied Materials and Interfaces, 7(18), 9399–9409.
https://doi.org/10.1021/acsami.5b02685
- Bang, L. T., Long, B. D., Othman, R. 2014. Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: Synthesis, mechanical properties, and solubility evaluations. The Scientific World Journal, 87, 788–796
https://doi.org/10.1155/2014/969876
- Barbosa, G. P., Debone, H. S., Severino, P., Souto, E. B., Da Silva, C. F. 2016. Design and characterization of chitosan/zeolite composite films - Effect of zeolite type and zeolite dose on the film properties. Materials Science and Engineering C, 60, 246–254.
https://doi.org/10.1016/j.msec.2015.11.034
- Darr, J. a, Guo, Z. X., Raman, V., Bououdina, M., Rehman, I. U. 2004. Metal organic chemical vapour deposition (MOCVD) of bone mineral like carbonated hydroxyapatite coatings. Chemical communications, 6, 696–697.
https://doi.org/10.1039/B312855P
- Dau, M., Ganz, C., Zaage, F., Staedt, H., Goetze, E., Gerber, T., Kämmerer, P. W. 2020. In vivo comparison of a granular and putty form of a sintered and a non-sintered silica-enhanced hydroxyapatite bone substitute material. Journal of Biomaterials Applications, 34(6), 864–874.
https://doi.org/10.1177/0885328219877584.
- De Carvalho, B., Rompen, E., Lecloux, G., Schupbach, P., Dory, E., Art, J. F., Lambert, F. 2019. Effect of sintering on in vivo biological performance of chemically deproteinized bovine hydroxyapatite. Materials, 12(23), 3946.
https://doi:10.3390/ma12233946
- Dosa, M., Grifasi, N., Galletti, C., Fino, D., Piumetti, M. 2022. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. Materials, 15(22), 8191.
https://doi.org/10.3390/ma15228191
- Erdoǧan, B., Sakizci, M., Yörükoǧullari, E. 2008. Characterization and ethylene adsorption of natural and modified clinoptilolites. Applied Surface Science, 254(8), 2450–2457.
https://doi.org/10.1016/j.apsusc.2007.09.058
- Galletti, C., Dosa, M., Russo, N., Fino, D. 2021. Zn2+ and Cd2+ removal from wastewater using clinoptilolite as adsorbent. Environmental Science and Pollution Research, 28(19), 24355–24361.
https://doi.org/10.1007/s11356-020-08483-z
- Garcia-Basabe, Y., Rodriguez-Iznaga, I., De Menorval, L. C., Llewellyn, P., Maurin, G., Lewis, D. W., … Ruiz-Salvador, A. R. 2010. Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization. Microporous and Mesoporous Materials, 135(1–3), 187–196.
https://doi.org/10.1016/j.micromeso.2010.07.008
- Granito, R. N., Renno, A. C. M., Yamamura, H., de Almeida, M. C., Ruiz, P. L. M., Ribeiro, D. A. 2018. Hydroxyapatite from fish for bone tissue engineering: A promising approach. International Journal of Molecular and Cellular Medicine, 7(2), 80–90.
https://doi.org/10.22088/IJMCM.BUMS.7.2.80.
- Higashi, S., Yamamuro, T., Nakamura, T., Ikada, Y., Hyon, S. H., Jamshidi, K. 1986. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials, 7(3), 183–187.
https://doi.org/10.1016/0142-9612(86)90099-2
- Iqbal, N., Abdul Kadir, M. R., Iqbal, S., Razak, S. I. A., Shahid Rafique, M., Bakhsheshi-Rad, H. R., … Abbas, A. A. 2016. Nano-hydroxyapatite reinforced zeolite ZSM composites: A comprehensive study on the structural and in vitro biological properties. Ceramics International, 42(6), 7175–7182.
https://doi.org/10.1016/j.ceramint.2016.01.107
- Iqbal, N., Abdul Kadir, M. R., Mahmood, N. H. Bin, Yusoff, M. F. M., Siddique, J. A., Salim, N., … Kamarul, T. 2014. Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite-hydroxyapatite (Zeo-HA) composite for bone tissue engineering applications. Ceramics International, 40(10), 16091–16097.
https://doi.org/10.1016/j.ceramint.2014.07.038
- Jagadale, P. N., Jagtap, P. P., Joshi, M. G., Bamane, S. R. 2016. A prototype synthesis and characterization of hydroxyapatite bioceramics nanocrystallites. Advanced Materials Letters, 7(4), 325–329.
https://doi.org/10.5185/amlett.2016.5837.
- Juhasz, J. A., Best, S. M. 2012. Bioactive ceramics: processing, structures and properties. Journal of Materials Science, 47(2), 610–624.
https://doi.org/10.1007/s10853-011-6063-x
- Kalkandelen, C., Gunduz, O., Akan, A., Oktar, F. N. 2017. "Part 1: Clinoptilolite-alumina-hydroxyapatite composites for biomedical engineering. Journal of the Australian Ceramic Society, 53(1), 91–99.
https://doi.org/10.1007/s41779-016-0013-7
- Kalkandelen, C., Suleymanoglu, M., Kuruca, S. E., Akan, A., Oktar, F. N., Gunduz, O. 2017. "Part 2: Biocompatibility evaluation of hydroxyapatite-based clinoptilolite and Al2O3 composites. Journal of the Australian Ceramic Society, 53(1), 217–223.
https://doi.org/10.1007/s41779-017-0027-9
- Kannan, S., Lemos, A. F., Ferreira, J. M. F. 2006. Synthesis and Mechanical Performance of Biological-like Hydroxyapatites. Chemistry of Materials, 18(8), 2181–2186.
https://doi.org/10.1021/cm052567q
- Karacayli, U., Gunduz, O., Salman, S., Ozyegin, L. S., Agathopoulos, S., Sengil, A. Z., OktaR, F. N. 2010. Effect of sintering temperature on mechanical properties and microstructure of zeolite (clinoptilolite) reinforced bovine hydroxyapatite (BHA) composites, R. M. Natal Jorge, S. M. Santos, l R. S. João Manue, R. C. Tavares, & M. A. P. Vaz (Ed.), Biodental Engineering. London: Taylor & Francis Group, 105–108
- Khan, A. F., Awais, M., Khan, A. S., Tabassum, S., Chaudhry, A. A., Rehman, I. U. 2013. Raman Spectroscopy of Natural Bone and Synthetic Apatites. Applied Spectroscopy Reviews, 48(4), 329–355.
https://doi.org/10.1080/05704928.2012.721107
- Kocaaga, B., Kurkcuoglu, O., Tatlier, M., Batirel, S., Guner, F. S. 2019. Low-methoxyl pectin–zeolite hydrogels controlling drug release promote in vitro wound healing. Journal of Applied Polymer Science, 136(24), 1–16.
https://doi.org/10.1002/app.47640
- Koçak, F. Z., Küçükdeveci, N., Daldiken, E. 2022. Zeolitlerin Özellikleri ve Doku Mühendisliği Uygulamaları. Nevşehir Bilim ve Teknoloji Dergisi, 11(2), 8–15.
https://doi.org/10.17100/nevbiltek.1178348
- Kocak, F. Z., Yar, M., Rehman, I. U. 2022a. Hydroxyapatite-Integrated, Heparin- and Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance. International Journal of Molecular Sciences, 23(10), 53–70.
https://doi.org/10.3390/ijms23105370.
- Kocak, F. Z., Yar, M., Rehman, I. U. (2022b). Investigation of Different Synthesis Parameters of Hydroxyapatite For Tissue Engineering Applications. The Sixth International Symposium on Pharmaceutical and Biomedical Sciences (ISPBS-6), Gaziantep, Turkey, 121–126.
- Landi, E., Tampieri, A., Mattioli-Belmonte, M., Celotti, G., Sandri, M., Gigante, A., … Biagini, G. 2006. Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. Journal of the European Ceramic Society, 26(13), 2593–2601.
https://doi.org/10.1016/j.jeurceramsoc.2005.06.040
- Liu, Q., Huang, S., Matinlinna, J. P., Chen, Z., Pan, H. 2013. Insight into biological apatite: Physiochemical properties and preparation approaches. BioMed Research International, 2013, 1-13.
https://doi.org/10.1155/2013/929748
- Lu, H. H., El-Amin, S. F., Scott, K. D., Laurencin, C. T. 2003. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Journal of Biomedical Materials Research - Part A, 64(3), 465–474.
https://doi.org/10.1002/jbm.a.10399.
- Mansouri, N., Rikhtegar, N., Ahmad Panahi, H., Atabi, F., Shahraki, B. K. 2013. Porosity, characterization and structural properties of natural zeolite - Clinoptilolite - As a sorbent. Environment Protection Engineering, 39(1), 139–152.
https://doi.org/10.5277/EPE130111
- Matsumoto, T., Okazaki, M., Inoue, M., Yamaguchi, S., Kusunose, T., Toyonaga, T., … Takahashi, J. 2004. Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials, 25(17), 3807–3812.
https://doi.org/10.1016/j.biomaterials.2003.10.081
- Ninan, N., Muthiah, M., Park, I. K., Elain, A., Wong, T. W., Thomas, S., Grohens, Y. 2013. Faujasites incorporated tissue engineering scaffolds for wound healing: In vitro and in vivo analysis. ACS Applied Materials and Interfaces, 5(21), 11194–11206.
https://doi.org/10.1021/am403436y.
- Panda, S., Biswas, C. K., Paul, S. 2021. A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering. Ceramics International, 47(20), 28122–28144.
https://doi.org/10.1016/j.ceramint.2021.07.100
- Pavelić, K., Hadžija, M., Bedrica, L., Pavelić, J., Crossed D signikić, I., Katić, M., … Čolić, M. 2000. Natural zeolite clinoptilolite: New adjuvant in anticancer therapy. Journal of Molecular Medicine, 78(12), 708–720.
https://doi.org/10.1007/s001090000176
- Pietak, A. M., Reid, J. W., Stott, M. J., Sayer, M. 2007. Silicon substitution in the calcium phosphate bioceramics. Biomaterials, 28(28), 4023–4032.
https://doi.org/10.1016/j.biomaterials.2007.05.003
- Puszka, A., Kneć, M., Franus, W., Podkościelna, B. 2023. Preparation and Thermo-Mechanical Characteristics of Composites Based on Epoxy Resin with Kaolinite and Clinoptilolite. Polymers, 15(8) 1898.
https://doi.org/10.3390/polym15081898
- Rehman, I., Bonfield, W. 1997. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. Journal of Materials Science: Materials in Medicine, 8(1), 1–4.
https://doi.org/10.1023/a:1018570213546
- Rodríguez-Fuentes, G., Ruiz-Salvador, A. R., Mir, M., Picazo, O., Quintana, G., Delgado, M. 1998. Thermal and cation influence on IR vibrations of modified natural clinoptilolite. Microporous and Mesoporous Materials, 20(4–6), 269–281.
https://doi.org/10.1016/S1387-1811(97)00013-9
- Sadeghinia, A., Soltani, S., Aghazadeh, M., Khalilifard, J., Davaran, S. 2020. Design and fabrication of clinoptilolite–nanohydroxyapatite/chitosan–gelatin composite scaffold and evaluation of its effects on bone tissue engineering. Journal of Biomedical Materials Research - Part A, 108(2), 221–233.
https://doi.org/10.1002/jbm.a.36806
- Sahin, M. B. 2014. Zeoli̇tler. MTA Doğal Kaynaklar ve Ekonomi Bülteni, 17, 53–60.
- Schiavo, L., Boccia, V., Aversa, L., Verucchi, R., Carotenuto, G., Valente, T. 2023. Natural Clinoptilolite Nanoplatelets Production by a Friction-Based Technology. Materials prooceedings, 14(1), 11.
https://doi.org/10.3390/IOCN2023-14474
- Serati-Nouri, H., Jafari, A., Roshangar, L., Dadashpour, M., Pilehvar-Soltanahmadi, Y., Zarghami, N. 2020. Biomedical applications of zeolite-based materials: A review. Materials Science and Engineering C, 116, 111225.
https://doi.org/10.1016/j.msec.2020.111225
- Servatan, M., Zarrintaj, P., Mahmodi, G., Kim, S. J., Ganjali, M. R., Saeb, M. R., Mozafari, M. 2020. Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discovery Today, 25(4), 642–656.
https://doi.org/10.1016/j.drudis.2020.02.005
- Shumskaya, L. G., Kirillova, Y. A., Yusupov, T. S. 1999. Controlled changes in technological properties of phosphates in mechanical activation with zeolites. Journal of Mining Science, 35(1), 96–100.
- Singh, J., Chatha, S. S., Singh, H. 2021. Characterization and corrosion behavior of plasma sprayed calcium silicate reinforced hydroxyapatite composite coatings for medical implant applications. Ceramics International, 47(1), 782–792.
https://doi.org/10.1016/j.ceramint.2020.08.189
- Tok, S. 2009. Doğal Zeolit (Klinoptilolit) ile Bakır Adsorpsiyonu. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Istanbul, 62.
- Wang, S., Peng, Y. 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11–24.
https://doi.org/10.1016/j.cej.2009.10.029
- Watanabe, Y., Ikoma, T., Suetsugu, Y., Yamada, H., Tamura, K., Komatsu, Y., … Moriyoshi, Y. 2006. Type-A zeolites with hydroxyapatite surface layers formed by an ion exchange reaction. Journal of the European Ceramic Society, 26(4–5), 469–474.
https://doi.org/10.1016/j.jeurceramsoc.2005.07.024
- Yazdanian, M., Tabesh, H., Houshmand, B., Tebyanian, H., Soufdoost, R. S., Tahmasebi, E., … Ghullame, S. 2020. Fabrication and properties of βTCP/Zeolite/Gelatin scaffold as developed scaffold in bone regeneration: in vitro and in vivo studies. Biocybernetics and Biomedical Engineering, 40(4), 1626–1637.
https://doi.org/10.1016/j.bbe.2020.10.006
- Zarrintaj, P., Mahmodi, G., Manouchehri, S., Mashhadzadeh, A. H., Khodadadi, M., Servatan, M., … Mozafari, M. 2020. Zeolite in tissue engineering: Opportunities and challenges. MedComm, 1(1), 5–34.
https://doi.org/10.1002/mco2.5
- Zhan, Y., Lin, J., Li, J. 2013. Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper(II). Environmental Science and Pollution Research, 20(4), 2512–2526.
https://doi.org/10.1007/s11356-012-1136-1