Research Article
BibTex RIS Cite

Investigation of the Mechanical Properties of Mortars Produced with Classified Ash Obtained by Substituting Amorphous Silica into Classless Afşin-Elbistan Fly Ash

Year 2024, , 388 - 399, 29.04.2024
https://doi.org/10.35414/akufemubid.1364713

Abstract

To reduce Turkey's foreign dependence on energy production, one solution is to use low-calorific lignite coals that are unsuitable for other industries in thermal power plants. This study evaluates the substitution of amorphous silica AEFA-AS-5%, AEFA-AS-10%, AEFA-AS-15%, AEFA-AS-20%, AEFA-AS-25%, and AEFA-AS-30% ratios for Afşin-Elbistan unclassified fly ash, classified as C class ash. Some physical and mechanical properties of the samples were investigated by producing dough and mortar mixtures with class C ash. Compressive, sulphate, alkali silica reaction, abrasion and freeze thaw resistance and microstructure properties of the dough and mortar samples produced from the mixture were investigated and compared with the reference sample. The study found that as the amorphous silica substitution ratio increased, the blaine values also increased. Additionally, the setting start and end times increased, while the expansion values and capillary water absorption values decreased. The amorphous silica substitution also contributed to a 5-11% increase in compressive strength values, a 4-11% increase in flexural strength values, and a 2-8% decrease in freeze-thaw loss rates. SEM analyses supported the mechanical and durability values. It has been determined that the optimal amount of amorphous silica substitution for unclassified Afşin-Elbistan ash is 15%.

Project Number

2021/2-1

References

  • Ali, M. B., Saidur, R., Hossain, M. S., 2011. A review on emission analysis in cement industries. Renewable and Sustainable Energy Reviews, 15(5), 2252–2261. https://doi.org/10.1016/j.rser.2011.02.014
  • Amran, M., Murali, G., Fediuk, R., Vatin, N., Vasilev, Y., Abdelgader, and H., 2021. Palm oil fuel ash-based eco-efficient concrete: A critical review of the short-term properties. Materials (Basel). 14, 1–33. https://doi.org/10.3390/ma14020332
  • ASTM C 618-17a, 2017. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International, West Conshohocken, PA.
  • ASTM C1293-08b, 2008. Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction. PA, USA.
  • ASTM C666, 1998. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing”. Pennsylvania, USA.
  • Barbuta, M., Bucur, R., Serbanoiu, A.A., Scutarasu, S., and Burlacu, A., 2017. Combined Effect of Fly Ash and Fibers on Properties of Cement Concrete. Procedia Eng. 181, 280–284. https://doi.org/10.1016/j.proeng.2017.02.390
  • Bektas, F., Turanli, L., Topal,T., and Goncuoğlu. M.C., 2004. Alkali reactivity of mortars containing chert and incorporating moderate-calcium fly ash. Cement and Concrete Research. 34, 2209–2214. https://doi.org/10.1016/j.cemconres.2004.02.007
  • Bideci, Ö. S., Bideci, A., 2018. Öğütülmüş Kolemanit Katkısının Çimento Harçlarına Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 30(1), 133-138.
  • Binici, H., Eken, M., Uslu, K., 2021. Propertıes Of Mortars Produced Wıth Classless Afsın-Elbıstan Fly Ash And Waste Ground Glass. Konya Journal of Engineering Sciences. 9(2), 416-427. https://doi.org/10.36306/konjes.825996
  • Brooks, J.J., Megat Johari, M.A., and Mazloom, M., 2000. Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Compos. 22 (4), 293–301. https://doi.org/10.1016/S0958-9465(00)00025-1
  • Çelik, Ö., 2004. Farklı İnceliklerdeki Tras ve Uçucu Külün Çimento Dayanımlarına Etkisi. Pamukkale Unıversıty Engıneerıng Journal of Engıneerıng Scıences. 10 (3), 333-337.
  • Dave, N., Misra, A.K., Srivastava, A., Kaushik, S.K., 2016. Experimental Analysis Of Strength And Durability Properties Of Quaternary Cement Binder And Mortar. Construction and Building Materials. 107, 117-124. https://doi.org/10.1016/j.conbuildmat.2015.12.195
  • Davraz, M., ve Gündüz, L., 2003. Isparta Yöresi Amorf Silika Kayacının Katkı Maddesi Olarak Beton Dayanımına Etkisi. 3. Ulusal Kırmataş Sempozyumu Kitabı. 35-42, 3-4 Aralık, İstanbul.
  • Demirörs, N. 2009. Suudi Arabistan Damad Barajında Uçucu Kül Yerine Puzolanik Madde Olarak Taş Unu Kullanımı ve Proje Ekonomisine Etkisi. ARCEA-Association of Turkish Consulting Engineers and Architects 7th Engineering Consultancy Congress, Ankara.
  • Dorum, A., Koçak, Y., Yılmaz, B., Uçar, A., 2009. Yüksek Fırın Cürufunun Çimento Yüzey Özelliklerine ve Hidratasyona Etkileri. Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü Dergisi. 19, 47-58.
  • Erdoğdu, Ş., Arslantürk, C., Kurbetci, Ş. 2011. Influence of fly ash and silica fume on the consistency retention and compressive strength of concrete subjected to prolonged agitating. Construction and Building Materials. 25(3), 1277-1281. https://doi.org/10.1016/j.conbuildmat.2010.09.024
  • Fayomi, G.U., Mini, S.E., Fayomi, O.S.I., and Ayoola, A.A., 2019. Perspectives on environmental CO2 emission and energy factor in Cement Industry. IOP Conf. Ser. Earth Environ. Sci. 1, 331. https://doi.org/10.1088/1755-1315/331/1/012035
  • Fernandez-Jimenez, A., Garcia-Lodeiro, I., and Palomo, A., 2007. Durability of alkali-activated fly ash cementations materials. Advances In Geopolymer Science & Technology. 42, 3055–3065. https://doi.org/10.1007/s10853-006-0584-8
  • Filho, J.H., Medeiros, M.H.F., Pereira, E., Helene, P., and Isaia, G.C., 2013. High-Volume Fly Ash Concrete with and without Hydrated Lime: Chloride Diffusion Coefficient from Accelerated Test. J. Mater. Civ. Eng. 25 (3), 411–418. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000596
  • Harish, K.V., and Rangaraju, P.R., 2013. Decoupling the Effects of Chemical Composition and Fineness of Fly Ash in Mitigating Alkali-Silica Reaction. Cement and Concrete Composites. 43, 54-68. https://doi.org/10.1016/j.cemconcomp.2013.06.009
  • International Energy Agency (IEA) and World Business Council for Sustainable Development (WBCSD), Cement Technology Roadmap 2009-Carbon Emissions Reductions up to 2050, 2009.
  • Islam, M.M., Alam, M.T., and Islam, M.S., 2018. Effect of fly ash on freeze–thaw durability of concrete in marine environment. Aust. J. Struct. Eng. 19 (2), 146–161. https://doi.org/10.1080/13287982.2018.1453332
  • Jena, T., and Panda, K.C., 2018. Mechanical and durability properties of marine concrete using fly ash and silpozz. Adv. Concr. Constr. 6 (1), 47–68. https://doi.org/10.12989/acc.2018.6.1.047
  • Kumar, S., Murthi, P., Awoyera, P., Gobinath, R., and Kumar, S., 2022. Impact Resistance and Strength Development of Fly Ash Based Self-compacting Concrete. Silicon. 14, 481–492. https://doi.org/10.1007/s12633-020-00842-2
  • Latawiec, R., Woyciechowski, P., and Kowalski, K.J., 2018. Sustainable concrete performance CO2 emission. Environ. MDPI 5 (2), 1–14. https://doi.org/10.3390/environments5020027
  • Li, G., Liu, S., Niu, M., Liu, Q., Yang, X., Deng, M. 2020. Effect of granulated blast furnace slag on the self-healing capability of mortar incorporating crystalline admixture. Construction and Building Materials. 239, 117818. https://doi.org/10.1016/j.conbuildmat.2019.117818
  • Mahyar, M., Erdogan, S.T., 2015. Phosphate-activated high-calcium fly ash acid-base cements. Cem. Concr. Compos. 96–103. https://doi.org/10.1016/j.cemconcomp.2015.09.002
  • Marceau, M.L., Gajda, J., and VanGeem, M., 2002. Use of Fly Ash in Concrete: Normal and High Volume Ranges. Portland Cement Association. 2604.
  • Mardani, A., Sezer, G.İ., and Ramyar, K., 2014. Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point. Construction and Building Materials. 70, 17-25. https://doi.org/10.1016/j.conbuildmat.2014.07.089
  • McCarthy, M.J., and Dyer, T.D., 2019. Pozzolanas and Pozzolanic Materials, 5th ed., Elsevier Ltd.
  • Medepalli, S., Sharma, M., and Bishnoi, S., 2020. Blending of Fly Ashes to Reduce Variability in the Heat of Hydration and Compressive Strength. J. Mater. Civ. Eng. 32 (4), 04020046. https://doi.org/10.1061/(ASCE)MT.1943-5533.00031
  • Mondal, P., Shah, S. P., Marks, L. D., Gaitero, J. J. 2010. Comparative study of the effects of microsilica and nanosilica in concrete. Transportation Research Record. 2141(1), 6-9. https://doi.org/10.3141/2141-02
  • Montgomery, D.G., Hughes, D.C., and Williams, R.I.T., 1981. Fly ash in concrete - a microstructure study. Cem. Concr. Res. 11 (4), 591–603.
  • Mukhopadhyay, K.A., and Liu, W.K., 2015. Application of nanotechnology to control ASR in Portland cement concrete. Nanotechnol. Constr. 465–471.
  • Nie, Q., Zhou, C., Shu, X., He, Q., and Huang, B., 2014. Chemical, mechanical, and durability properties of concrete with local mineral admixtures under sulfate environment in Northwest China. Materials (Basel). 7 (5), 3772–3785. https://doi.org/10.3390/ma7053772.
  • Nocun-Wczelik, W., 2001. Heat evolution in hydrated cementitious systems admixtured with fly ash. J. Therm. Anal. Calorim. 65 (2), 613–619.
  • Ondova, M., Stevulova, N., and Estokova, A., 2012. The study of the properties of fly ash based concrete composites with various chemical admixtures. Procedia Eng. 42, 1863–1872. https://doi.org/10.1016/j.proeng.2012.07.582
  • Paliwal, G., and Marua, S., 2017. Effect of fly ash and plastic waste on mechanical and durability properties of concrete. Adv. Concr. Constr. 5 (6), 575–586.
  • Patil, A.G., and Anandhan, S., 2015. Influence of planetary ball milling parameters on the mechano-chemical activation of fly ash. Powder Technol. 281, 151-158. https://doi.org/10.1016/j.powtec.2015.04.078
  • Peker, S.N., 2006. Lignite-fired thermal power plants and SO2 pollution in Turkey. Energy Policy. 34, 2690–2701. https://doi.org/10.1016/j.enpol.2005.03.006
  • Praveen Kumar, V.V., and Ravi Prasad, D., 2019. Influence of Supplementary Cementitious Materials on Strength and Durability Characteristics of Concrete. Adv. Concr. Constr. 7 (2), 75–85. https://doi.org/10.12989/acc.2019.7.2.075
  • Ramyar, K., Dönmez, H., ve Andiç, Ö., 2002. Alkali-Silis Reaksiyonunun Mineral ve Kimyasal Katkılar Yardımı ile Kontrol Altına Alınması. Türkiye Çimento Müstahsilleri Birliği. Çimento Endüstrisi-Üniversite İş birliği Araştırma Projesi Raporları, Rapor No:9, Ege Üniversitesi, İzmir, Türkiye.
  • Sadrmomtazi, A., Tahmouresi, B., and Khoshkbijari, R.K., 2018. Effect of fly ash and silica fume on transition zone, pore structure and permeability of concrete. Mag. Concr. Res. 70 (10), 519–532. https://doi.org/10.1680/jmacr.16.00537
  • Schneider, M., 2015. Process technology for efficient and sustainable cement production. Cem. Concr. Res. 78, 14-23. https://doi.org/10.1016/j.cemconres.2015.05.014
  • Sottili, L.., and Padovani, D., 2011. Effect of grinding aids in the cement industry. ZKG International. 54 (3), 146-151. https://doi.org/doi:10.1088/1742-6596/1082/1/012091
  • Şengül, Ö., Taşdemir, M.A., Sönmez, R., 2003. Yüksek Oranda Uçucu Kül İçeren Normal ve Yüksek Dayanımlı Betonların Klor Geçirimliliği. 5. Ulusal Beton Kongresi, TMMOB İnşaat Mühendisleri Odası İstanbul Şubesi, İstanbul, 75-85.
  • Şimşek, O., 2000. Yapı malzemesi II. Ankara Üniversitesi Basımevi, Ankara, Türkiye.
  • Tampus, R. M., Lardizabal, J. R., Acena, D. L. M., Uy, M. A. M., and Arcenal, K. V. R., 2020. Proportion and property specifications and strength behavior of mortar using wood ash as partial replacement of lime. International Journal. 18 (70), 49-55. https://doi.org/10.21660/2020.70.5757
  • Thomas, M.D.A., 2007. Optimizing the Use of Fly Ash in Concrete. Portl. Cem. Assoc. 24, 5420.
  • Topçu, İ.B., Bilir, T., Uygunoğlu, T., 2009. Effect Of Waste Marble Dust Content As Filler On Properties Of Self-Compacting Concrete. Construct. Build. Mat., 23 (5), 1947-1953. https://doi.org/10.1016/j.conbuildmat.2008.09.007
  • Tosun, K., Felekoğlu, B., Baradan, B., and Altun, İ. A., 2009. Portland Calcareous Cement Part I - Preparation of Cements. IMO Technical Journal. 309, 4717-4736.
  • TS 4045, 1985. Determination of Capillary Water Absorption in Building Materials, Turkish Standards Institute, Ankara.
  • TS EN 196-1, 2016. Methods of testing cement - Part 1: Determination of strength.
  • TS EN 196-3, 2002. Cement Test Methods - Part.3: Setting time and expansion determination, Turkish Standards Institute, Ankara.
  • TS EN 196-3, 450-1, 459-2; TS EN ISO 9597 2002. Le Chatelier molds; It is used with Le Chatelier Water Bath to measure the expansion volume change of fly ash and lime used in cement, concrete.
  • TS EN 196-6, 2020. Çimento deney yöntemleri- Bölüm 6: İncelik tayini.
  • TS EN 197-1, 2011. Cement – Part 1: Composition, specifications and conformity criteria for common cements, European Committee for Standardization, Brussels, Belgium.
  • TS EN 450-1, 2012. Fly ash for concrete- Part 1: Definition, specification and conformity criteria, European Committee for Standardization, Brussels, Belgium.
  • Turgut, P., and Demir, F., 2019. The influence of disposed fly ash on Ca2+ leaching and physico-mechanical properties of mortars. J. Clean. Prod. 226, 270–281. https://doi.org/10.1016/j.jclepro.2019.04.105
  • Türker, P., Erdogan, B., Kantas, F., and Yeginobalı, A., 2003. Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri. Türkiye Çimento Müstahsilleri Birliği. 20-34, Ankara.
  • Varun, B.K., Harish, B.A., 2018. Effect of Addition of Flyash and Ggbs on Cement Concrete in Fresh and Hardened State. Int. J. Adv. Eng. Res. Dev. 5 91–100. https://doi.org/10.17577/IJERTCONV6IS11023
  • Wang, L., Jin, M., Guo, F., Wang, Y.A.N., and Tang, S., 2021. Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete. Fractals 29 (2), 1–18. https://doi.org/10.1142/S0218348X2140003X
  • Xu, O., Han, S., Liu, Y., and Li, C., 2020. Experimental investigation surface abrasion resistance and surface frost resistance of concrete pavement incorporating fly ash and slag. Int. J. Pavement Eng. 1–9. https://doi.org/10.1080/10298436.2020.1726348
  • Zeidan, M., and Said, M. A., 2016. Effect of colloidal nano-silica on alkali–silica mitigation. J. Sustainable Cem. -Based Mater. 6 (2), 126–138. https://doi.org/10.1080/21650373.2016.1191387
  • http://www. holcim.com. (02.02.2015)

Sınıfsız Afşin – Elbistan Uçucu Külüne Amorf Silis İkame Edilerek Elde Edilen Sınıflı Kül ile Üretilen Harçların Mekanik Özelliklerinin Araştırılması

Year 2024, , 388 - 399, 29.04.2024
https://doi.org/10.35414/akufemubid.1364713

Abstract

Türkiye’nin enerji üretiminde dışa bağımlılığını azaltmanın bir yolu da endüstrinin diğer kesimlerinde yararlanılamayan düşük kalorili linyit kömürlerini termik santrallerde kullanmaktan geçmektedir. Bu çalışmada Afşin – Elbistan sınıfsız uçucu külüne amorf silis AEFA-AS-%5, AEFA-AS-%10, AEFA-AS-%15, AEFA-AS-%20, AEFA-AS-%25 ve AEFA-AS-%30 oranlarında ikame edilerek C sınıfı kül olarak değerlendirilmesi amaçlanmıştır. Sınıflı kül ile hamur ve harç karışımları üretilerek numunelerin bazı fiziksel ve mekanik özellikleri araştırılmıştır. Karışımdan üretilen hamur ve harç numunelerinin basınç, sülfat, alkali silika reaksiyonu, aşınma ve donma çözünme dayanımı ve mikro yapı özellikleri incelenerek referans numunesi ile karşılaştırılmıştır. Deney sonuçları ile blaine değerlerinin amorf silis ikame oranı arttıkça arttığı, priz başlama ve sona erme sürelerini arttırdığı, genleşme değerlerini düşürdüğü, kapiler su emme değerlerini azalttığı, basınç dayanım değerleri %5-11 oranında, eğilme dayanım değerlerine %4-11 oranlarında katkı sağladığı ve donma-çözülme kayıp oranlarını %2-8 oranlarında azalttığı belirlenmiştir. Mekanik ve durabilite değerleri SEM incelemeleri ile desteklenmiştir. Ayrıca sınıfsız Afşin-Elbistan külüne amorf silis ikamesinin %15 oranında katılmasının optimum değer olduğu tespit edilmiştir.

Supporting Institution

Kahramanmaraş İstiklal Üniversitesi Bilimsel Araştırmalar Birimi

Project Number

2021/2-1

Thanks

Yazarlar Amorf silis katkı temini için H.T.O. Mineral ve Madencilik Ltd. Şti.’ne, Çimento temini için KÇS Çimento AŞ’ne, Uçucu kül temini için Afşin-Elbistan Termik Santrallerine teşekkür ederler. Ayrıca, yapılan çalışma Kahramanmaraş İstiklal Üniversitesi 2021/2-1 No.lu BAP tarafından desteklenmiştir.

References

  • Ali, M. B., Saidur, R., Hossain, M. S., 2011. A review on emission analysis in cement industries. Renewable and Sustainable Energy Reviews, 15(5), 2252–2261. https://doi.org/10.1016/j.rser.2011.02.014
  • Amran, M., Murali, G., Fediuk, R., Vatin, N., Vasilev, Y., Abdelgader, and H., 2021. Palm oil fuel ash-based eco-efficient concrete: A critical review of the short-term properties. Materials (Basel). 14, 1–33. https://doi.org/10.3390/ma14020332
  • ASTM C 618-17a, 2017. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International, West Conshohocken, PA.
  • ASTM C1293-08b, 2008. Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction. PA, USA.
  • ASTM C666, 1998. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing”. Pennsylvania, USA.
  • Barbuta, M., Bucur, R., Serbanoiu, A.A., Scutarasu, S., and Burlacu, A., 2017. Combined Effect of Fly Ash and Fibers on Properties of Cement Concrete. Procedia Eng. 181, 280–284. https://doi.org/10.1016/j.proeng.2017.02.390
  • Bektas, F., Turanli, L., Topal,T., and Goncuoğlu. M.C., 2004. Alkali reactivity of mortars containing chert and incorporating moderate-calcium fly ash. Cement and Concrete Research. 34, 2209–2214. https://doi.org/10.1016/j.cemconres.2004.02.007
  • Bideci, Ö. S., Bideci, A., 2018. Öğütülmüş Kolemanit Katkısının Çimento Harçlarına Etkisi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 30(1), 133-138.
  • Binici, H., Eken, M., Uslu, K., 2021. Propertıes Of Mortars Produced Wıth Classless Afsın-Elbıstan Fly Ash And Waste Ground Glass. Konya Journal of Engineering Sciences. 9(2), 416-427. https://doi.org/10.36306/konjes.825996
  • Brooks, J.J., Megat Johari, M.A., and Mazloom, M., 2000. Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Compos. 22 (4), 293–301. https://doi.org/10.1016/S0958-9465(00)00025-1
  • Çelik, Ö., 2004. Farklı İnceliklerdeki Tras ve Uçucu Külün Çimento Dayanımlarına Etkisi. Pamukkale Unıversıty Engıneerıng Journal of Engıneerıng Scıences. 10 (3), 333-337.
  • Dave, N., Misra, A.K., Srivastava, A., Kaushik, S.K., 2016. Experimental Analysis Of Strength And Durability Properties Of Quaternary Cement Binder And Mortar. Construction and Building Materials. 107, 117-124. https://doi.org/10.1016/j.conbuildmat.2015.12.195
  • Davraz, M., ve Gündüz, L., 2003. Isparta Yöresi Amorf Silika Kayacının Katkı Maddesi Olarak Beton Dayanımına Etkisi. 3. Ulusal Kırmataş Sempozyumu Kitabı. 35-42, 3-4 Aralık, İstanbul.
  • Demirörs, N. 2009. Suudi Arabistan Damad Barajında Uçucu Kül Yerine Puzolanik Madde Olarak Taş Unu Kullanımı ve Proje Ekonomisine Etkisi. ARCEA-Association of Turkish Consulting Engineers and Architects 7th Engineering Consultancy Congress, Ankara.
  • Dorum, A., Koçak, Y., Yılmaz, B., Uçar, A., 2009. Yüksek Fırın Cürufunun Çimento Yüzey Özelliklerine ve Hidratasyona Etkileri. Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü Dergisi. 19, 47-58.
  • Erdoğdu, Ş., Arslantürk, C., Kurbetci, Ş. 2011. Influence of fly ash and silica fume on the consistency retention and compressive strength of concrete subjected to prolonged agitating. Construction and Building Materials. 25(3), 1277-1281. https://doi.org/10.1016/j.conbuildmat.2010.09.024
  • Fayomi, G.U., Mini, S.E., Fayomi, O.S.I., and Ayoola, A.A., 2019. Perspectives on environmental CO2 emission and energy factor in Cement Industry. IOP Conf. Ser. Earth Environ. Sci. 1, 331. https://doi.org/10.1088/1755-1315/331/1/012035
  • Fernandez-Jimenez, A., Garcia-Lodeiro, I., and Palomo, A., 2007. Durability of alkali-activated fly ash cementations materials. Advances In Geopolymer Science & Technology. 42, 3055–3065. https://doi.org/10.1007/s10853-006-0584-8
  • Filho, J.H., Medeiros, M.H.F., Pereira, E., Helene, P., and Isaia, G.C., 2013. High-Volume Fly Ash Concrete with and without Hydrated Lime: Chloride Diffusion Coefficient from Accelerated Test. J. Mater. Civ. Eng. 25 (3), 411–418. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000596
  • Harish, K.V., and Rangaraju, P.R., 2013. Decoupling the Effects of Chemical Composition and Fineness of Fly Ash in Mitigating Alkali-Silica Reaction. Cement and Concrete Composites. 43, 54-68. https://doi.org/10.1016/j.cemconcomp.2013.06.009
  • International Energy Agency (IEA) and World Business Council for Sustainable Development (WBCSD), Cement Technology Roadmap 2009-Carbon Emissions Reductions up to 2050, 2009.
  • Islam, M.M., Alam, M.T., and Islam, M.S., 2018. Effect of fly ash on freeze–thaw durability of concrete in marine environment. Aust. J. Struct. Eng. 19 (2), 146–161. https://doi.org/10.1080/13287982.2018.1453332
  • Jena, T., and Panda, K.C., 2018. Mechanical and durability properties of marine concrete using fly ash and silpozz. Adv. Concr. Constr. 6 (1), 47–68. https://doi.org/10.12989/acc.2018.6.1.047
  • Kumar, S., Murthi, P., Awoyera, P., Gobinath, R., and Kumar, S., 2022. Impact Resistance and Strength Development of Fly Ash Based Self-compacting Concrete. Silicon. 14, 481–492. https://doi.org/10.1007/s12633-020-00842-2
  • Latawiec, R., Woyciechowski, P., and Kowalski, K.J., 2018. Sustainable concrete performance CO2 emission. Environ. MDPI 5 (2), 1–14. https://doi.org/10.3390/environments5020027
  • Li, G., Liu, S., Niu, M., Liu, Q., Yang, X., Deng, M. 2020. Effect of granulated blast furnace slag on the self-healing capability of mortar incorporating crystalline admixture. Construction and Building Materials. 239, 117818. https://doi.org/10.1016/j.conbuildmat.2019.117818
  • Mahyar, M., Erdogan, S.T., 2015. Phosphate-activated high-calcium fly ash acid-base cements. Cem. Concr. Compos. 96–103. https://doi.org/10.1016/j.cemconcomp.2015.09.002
  • Marceau, M.L., Gajda, J., and VanGeem, M., 2002. Use of Fly Ash in Concrete: Normal and High Volume Ranges. Portland Cement Association. 2604.
  • Mardani, A., Sezer, G.İ., and Ramyar, K., 2014. Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point. Construction and Building Materials. 70, 17-25. https://doi.org/10.1016/j.conbuildmat.2014.07.089
  • McCarthy, M.J., and Dyer, T.D., 2019. Pozzolanas and Pozzolanic Materials, 5th ed., Elsevier Ltd.
  • Medepalli, S., Sharma, M., and Bishnoi, S., 2020. Blending of Fly Ashes to Reduce Variability in the Heat of Hydration and Compressive Strength. J. Mater. Civ. Eng. 32 (4), 04020046. https://doi.org/10.1061/(ASCE)MT.1943-5533.00031
  • Mondal, P., Shah, S. P., Marks, L. D., Gaitero, J. J. 2010. Comparative study of the effects of microsilica and nanosilica in concrete. Transportation Research Record. 2141(1), 6-9. https://doi.org/10.3141/2141-02
  • Montgomery, D.G., Hughes, D.C., and Williams, R.I.T., 1981. Fly ash in concrete - a microstructure study. Cem. Concr. Res. 11 (4), 591–603.
  • Mukhopadhyay, K.A., and Liu, W.K., 2015. Application of nanotechnology to control ASR in Portland cement concrete. Nanotechnol. Constr. 465–471.
  • Nie, Q., Zhou, C., Shu, X., He, Q., and Huang, B., 2014. Chemical, mechanical, and durability properties of concrete with local mineral admixtures under sulfate environment in Northwest China. Materials (Basel). 7 (5), 3772–3785. https://doi.org/10.3390/ma7053772.
  • Nocun-Wczelik, W., 2001. Heat evolution in hydrated cementitious systems admixtured with fly ash. J. Therm. Anal. Calorim. 65 (2), 613–619.
  • Ondova, M., Stevulova, N., and Estokova, A., 2012. The study of the properties of fly ash based concrete composites with various chemical admixtures. Procedia Eng. 42, 1863–1872. https://doi.org/10.1016/j.proeng.2012.07.582
  • Paliwal, G., and Marua, S., 2017. Effect of fly ash and plastic waste on mechanical and durability properties of concrete. Adv. Concr. Constr. 5 (6), 575–586.
  • Patil, A.G., and Anandhan, S., 2015. Influence of planetary ball milling parameters on the mechano-chemical activation of fly ash. Powder Technol. 281, 151-158. https://doi.org/10.1016/j.powtec.2015.04.078
  • Peker, S.N., 2006. Lignite-fired thermal power plants and SO2 pollution in Turkey. Energy Policy. 34, 2690–2701. https://doi.org/10.1016/j.enpol.2005.03.006
  • Praveen Kumar, V.V., and Ravi Prasad, D., 2019. Influence of Supplementary Cementitious Materials on Strength and Durability Characteristics of Concrete. Adv. Concr. Constr. 7 (2), 75–85. https://doi.org/10.12989/acc.2019.7.2.075
  • Ramyar, K., Dönmez, H., ve Andiç, Ö., 2002. Alkali-Silis Reaksiyonunun Mineral ve Kimyasal Katkılar Yardımı ile Kontrol Altına Alınması. Türkiye Çimento Müstahsilleri Birliği. Çimento Endüstrisi-Üniversite İş birliği Araştırma Projesi Raporları, Rapor No:9, Ege Üniversitesi, İzmir, Türkiye.
  • Sadrmomtazi, A., Tahmouresi, B., and Khoshkbijari, R.K., 2018. Effect of fly ash and silica fume on transition zone, pore structure and permeability of concrete. Mag. Concr. Res. 70 (10), 519–532. https://doi.org/10.1680/jmacr.16.00537
  • Schneider, M., 2015. Process technology for efficient and sustainable cement production. Cem. Concr. Res. 78, 14-23. https://doi.org/10.1016/j.cemconres.2015.05.014
  • Sottili, L.., and Padovani, D., 2011. Effect of grinding aids in the cement industry. ZKG International. 54 (3), 146-151. https://doi.org/doi:10.1088/1742-6596/1082/1/012091
  • Şengül, Ö., Taşdemir, M.A., Sönmez, R., 2003. Yüksek Oranda Uçucu Kül İçeren Normal ve Yüksek Dayanımlı Betonların Klor Geçirimliliği. 5. Ulusal Beton Kongresi, TMMOB İnşaat Mühendisleri Odası İstanbul Şubesi, İstanbul, 75-85.
  • Şimşek, O., 2000. Yapı malzemesi II. Ankara Üniversitesi Basımevi, Ankara, Türkiye.
  • Tampus, R. M., Lardizabal, J. R., Acena, D. L. M., Uy, M. A. M., and Arcenal, K. V. R., 2020. Proportion and property specifications and strength behavior of mortar using wood ash as partial replacement of lime. International Journal. 18 (70), 49-55. https://doi.org/10.21660/2020.70.5757
  • Thomas, M.D.A., 2007. Optimizing the Use of Fly Ash in Concrete. Portl. Cem. Assoc. 24, 5420.
  • Topçu, İ.B., Bilir, T., Uygunoğlu, T., 2009. Effect Of Waste Marble Dust Content As Filler On Properties Of Self-Compacting Concrete. Construct. Build. Mat., 23 (5), 1947-1953. https://doi.org/10.1016/j.conbuildmat.2008.09.007
  • Tosun, K., Felekoğlu, B., Baradan, B., and Altun, İ. A., 2009. Portland Calcareous Cement Part I - Preparation of Cements. IMO Technical Journal. 309, 4717-4736.
  • TS 4045, 1985. Determination of Capillary Water Absorption in Building Materials, Turkish Standards Institute, Ankara.
  • TS EN 196-1, 2016. Methods of testing cement - Part 1: Determination of strength.
  • TS EN 196-3, 2002. Cement Test Methods - Part.3: Setting time and expansion determination, Turkish Standards Institute, Ankara.
  • TS EN 196-3, 450-1, 459-2; TS EN ISO 9597 2002. Le Chatelier molds; It is used with Le Chatelier Water Bath to measure the expansion volume change of fly ash and lime used in cement, concrete.
  • TS EN 196-6, 2020. Çimento deney yöntemleri- Bölüm 6: İncelik tayini.
  • TS EN 197-1, 2011. Cement – Part 1: Composition, specifications and conformity criteria for common cements, European Committee for Standardization, Brussels, Belgium.
  • TS EN 450-1, 2012. Fly ash for concrete- Part 1: Definition, specification and conformity criteria, European Committee for Standardization, Brussels, Belgium.
  • Turgut, P., and Demir, F., 2019. The influence of disposed fly ash on Ca2+ leaching and physico-mechanical properties of mortars. J. Clean. Prod. 226, 270–281. https://doi.org/10.1016/j.jclepro.2019.04.105
  • Türker, P., Erdogan, B., Kantas, F., and Yeginobalı, A., 2003. Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri. Türkiye Çimento Müstahsilleri Birliği. 20-34, Ankara.
  • Varun, B.K., Harish, B.A., 2018. Effect of Addition of Flyash and Ggbs on Cement Concrete in Fresh and Hardened State. Int. J. Adv. Eng. Res. Dev. 5 91–100. https://doi.org/10.17577/IJERTCONV6IS11023
  • Wang, L., Jin, M., Guo, F., Wang, Y.A.N., and Tang, S., 2021. Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete. Fractals 29 (2), 1–18. https://doi.org/10.1142/S0218348X2140003X
  • Xu, O., Han, S., Liu, Y., and Li, C., 2020. Experimental investigation surface abrasion resistance and surface frost resistance of concrete pavement incorporating fly ash and slag. Int. J. Pavement Eng. 1–9. https://doi.org/10.1080/10298436.2020.1726348
  • Zeidan, M., and Said, M. A., 2016. Effect of colloidal nano-silica on alkali–silica mitigation. J. Sustainable Cem. -Based Mater. 6 (2), 126–138. https://doi.org/10.1080/21650373.2016.1191387
  • http://www. holcim.com. (02.02.2015)
There are 65 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other)
Journal Section Articles
Authors

Mustafa Eken 0000-0002-7559-876X

Ela Avşaroğlu 0000-0001-9373-1192

Project Number 2021/2-1
Early Pub Date April 14, 2024
Publication Date April 29, 2024
Submission Date September 22, 2023
Published in Issue Year 2024

Cite

APA Eken, M., & Avşaroğlu, E. (2024). Sınıfsız Afşin – Elbistan Uçucu Külüne Amorf Silis İkame Edilerek Elde Edilen Sınıflı Kül ile Üretilen Harçların Mekanik Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(2), 388-399. https://doi.org/10.35414/akufemubid.1364713
AMA Eken M, Avşaroğlu E. Sınıfsız Afşin – Elbistan Uçucu Külüne Amorf Silis İkame Edilerek Elde Edilen Sınıflı Kül ile Üretilen Harçların Mekanik Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2024;24(2):388-399. doi:10.35414/akufemubid.1364713
Chicago Eken, Mustafa, and Ela Avşaroğlu. “Sınıfsız Afşin – Elbistan Uçucu Külüne Amorf Silis İkame Edilerek Elde Edilen Sınıflı Kül Ile Üretilen Harçların Mekanik Özelliklerinin Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 2 (April 2024): 388-99. https://doi.org/10.35414/akufemubid.1364713.
EndNote Eken M, Avşaroğlu E (April 1, 2024) Sınıfsız Afşin – Elbistan Uçucu Külüne Amorf Silis İkame Edilerek Elde Edilen Sınıflı Kül ile Üretilen Harçların Mekanik Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 2 388–399.
IEEE M. Eken and E. Avşaroğlu, “Sınıfsız Afşin – Elbistan Uçucu Külüne Amorf Silis İkame Edilerek Elde Edilen Sınıflı Kül ile Üretilen Harçların Mekanik Özelliklerinin Araştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 2, pp. 388–399, 2024, doi: 10.35414/akufemubid.1364713.
ISNAD Eken, Mustafa - Avşaroğlu, Ela. “Sınıfsız Afşin – Elbistan Uçucu Külüne Amorf Silis İkame Edilerek Elde Edilen Sınıflı Kül Ile Üretilen Harçların Mekanik Özelliklerinin Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/2 (April 2024), 388-399. https://doi.org/10.35414/akufemubid.1364713.
JAMA Eken M, Avşaroğlu E. Sınıfsız Afşin – Elbistan Uçucu Külüne Amorf Silis İkame Edilerek Elde Edilen Sınıflı Kül ile Üretilen Harçların Mekanik Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:388–399.
MLA Eken, Mustafa and Ela Avşaroğlu. “Sınıfsız Afşin – Elbistan Uçucu Külüne Amorf Silis İkame Edilerek Elde Edilen Sınıflı Kül Ile Üretilen Harçların Mekanik Özelliklerinin Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 2, 2024, pp. 388-99, doi:10.35414/akufemubid.1364713.
Vancouver Eken M, Avşaroğlu E. Sınıfsız Afşin – Elbistan Uçucu Külüne Amorf Silis İkame Edilerek Elde Edilen Sınıflı Kül ile Üretilen Harçların Mekanik Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(2):388-99.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.