Research Article
BibTex RIS Cite

Türkiye Bina Deprem Yönetmeliğine Göre Tasarlanmış Çelik Binada Kalıcı Ötelemeleri İçeren Performans Değerlendirmesi

Year 2024, , 660 - 673, 27.06.2024
https://doi.org/10.35414/akufemubid.1388878

Abstract

Depremlerden sonraki gözlemler ve sayısal/deneysel çalışmalar, yapılarda deprem sonrası oluşan kalıcı yanal ötelemelerin belirli sınırları aşması durumunda, yapının kullanılmaz hale gelerek toptan kaybına sebep olabildiğini göstermiştir. Bu bağlamda, ekonomik kayıpları azaltmak için kalıcı yanal ötelemelerin de performans değerlendirmelerinde gözönüne alınması gerekmektedir. Bu çalışmada, Türkiye Bina Deprem Yönetmeliğine (TBDY) göre tasarlanmış çelik bir bina için, yönetmelikte yer alan temel performans düzeylerinin kalıcı yanal ötelemeler bakımından yeterlilikleri değerlendirilmiştir. İncelenen bina dört katlı ve taşıyıcı sistemi kenar akslara yerleştirilen bir doğrultuda Moment Aktaran Çerçeve (MAÇ)’ler, diğer asal doğrultuda Merkezi Çaprazlı Çerçeve (MÇÇ)’lerden oluşmaktadır. Bina, tasarım depremi düzeyini ve maksimum deprem düzeyini temsil eden iki grup deprem yer hareketi için çift doğrultulu doğrusal olmayan dinamik analiz ile incelenmiştir. Bina tasarım deprem düzeyi için TBDY’de öngörülen performans hedeflerini sağlamıştır. MAÇ sistemindeki performans değerlerlendirmeleri çok düşük düzeyde hasara işaret etmesine rağmen, kalıcı ötelemeler binanın deprem sonrası kullanılamaz hale gelme potansiyeli bulunduğunu göstermiştir. MÇÇ sistemindeki performans değerlerlendirmeleri ise daha büyük hasar düzeylerini işaret etmiş, ancak kalıcı öteleme davranışı bakımından çok daha iyi sonuçlar vermiştir. Elde edilen kalıcı öteleme sonuçlarında narin çaprazların burkulma sonrası çevrimsel davranışı etkili olmuştur.

References

  • AFAD, 2018. Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • AISC, 2010. Seismic Provisions for Structural Steel Buildings ANSI/AISC 341-10, American Institute of Steel Construction, Chicago, Illinois, USA.
  • Al-Atik L., Abrahamson N.A., 2010. An improved method for nonstationary spectral matching, Earthquake Spectra, Vol. 26, 6, pp. 601-617. https://doi.org/10.1193/1.3459159
  • Anderson JC, Fillipou FC, 1995. Dynamic response analysis of the 17-story canoga building, SAC technical report 95-04, pp 12-1–12-53.
  • ASCE, 2017. Seismic Evaluation and Retrofit of Existing Buildings: ASCE Standard ASCE/SEI 41-17, American Society of Civil Engineers Reston, VA, USA.
  • ASCE, 2022. Minimum Design Loads for Buildigs and Other Structures. American Society of Civil Engineers ASCE/SEI 7-2022, Reston, VA, USA.
  • Asgarkhani, N., Yakhchalian, M. and Mohebi, B., 2020. Evaluation of approximate methods for estimating residual drift demands in BRBFs. Engineering Structures, 224, 110849. https://doi.org/10.1016/j.engstruct.2020.110849
  • ATC, 1996. Seismic Evaluation and Retrofit of Concrete Buildings: ATC 40, Vol. 1, Applied Technology Council, Washington DC., USA.
  • Basim, M.C, Pourreza, F., Mousazadeh, M. and Hamed, A.A., 2022. The effects of modeling uncertainties on the residual drift of steel structures under mainshock-aftershock sequences. Structures, 36, 912–926. https://doi.org/10.1016/j.istruc.2021.12.050
  • Bruneau, M., Uang, C.M. and Sabelli, R. 2011, Ductile design of steel structures, Second edition, McGraw-Hill, 499-563.
  • Christopoulos, C., Pampanin, S. and Priestley, M. J. N., 2003. Performance-based seismic response of frame structures including residualdeformations. Part I: Single degree of freedom systems, Journal of Earthquake Engineering, 7, 1, 97–118. https://doi.org/10.1080/13632460309350443
  • Christopoulos, C. and Pampanin, S., 2004. Towards performance-based design of MDOF structures with explicit consideration on residual deformations. ISET Journal of Earthquake Technology, 41, 1, 53–73.
  • Comartin, C., Green, M., and Tubbesing, S., 1995. The Hyogoken-Nanbu Earthquake. Preliminary Reconnaissance Report, Earthquake Engineering Research Institute, Oakland CA, USA.
  • CSI, 2008. SAP2000 Structural Analysis Programs - User’s Manual, Computers and Structures Berkeley California, USA.
  • CSI, 2023. PERFORM-3D Computer Software. Computers and Structures, Berkeley, California, USA.
  • ÇŞB, 2016. Çelik Yapıların Tasarım Hesap ve Yapımına Dair Esaslar (ÇYTHYDE), Çevre ve Şehircilik Bakanlığı Ankara.
  • Eguchi R.T., Goltz J.D. and Taylor C.E., 1998. Direct economic losses in the Northridge Earthquake: A Three-Year Post-Event Perspective. Earthquake Spectra, 14, 2, 245-264. https://doi.org/10.1193/1.1585998
  • Erochko J., Christopoulos C., Tremblay R. and Choi H., 2011. Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7–05. Journal of Structural Engineering, 137, 5, 589–599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000296
  • FEMA, 1997. NEHRP Guidelines for the Seismic Rehabilitation of Buildings: FEMA 273, Federal Emergancy Management Agency Washington, D.C., USA.
  • Garlock, M., Ricles, J. and Sause, R., 2005. Experimental studies of full scale posttensioned steel connections. Journal of Structural Engineering, 131, 3, 438–448. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(438
  • Hancock J., Bommer J.J. and Stafford P.J., 2008. Numbers of scaled and matched accelerograms required for inelastic dynamic analyses. Earthquake Engineering and Structural Dynamics, 37, 1585-1607. https://doi.org/10.1002/eqe.827
  • Hu, S., Wang, W. and Qu, B., 2020. Seismic economic losses in mid-rise steel buildings with conventional and emerging lateral force resisting systems. Engineering Structures, 204, 110021. https://doi.org/10.1016/j.engstruct.2019.110021
  • Kamaris, G.S., Papavasileiou, G.S., Kamperidis, V.C. and Vasdravellis, G., 2022. Residual drift risk of self-centering steel MRFs with novel steel column bases in near-fault regions. Soil Dynamics and Earthquake Engineering, 162, 107391. https://doi.org/10.1016/j.soildyn.2022.107391
  • Kim, H.-J. and Christopoulos, C., 2008. Friction damped posttensioned self-centering steel moment-resisting frames. Journal of Structtural Engineering, 134, 11, 1768–1779. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1768)
  • McCormick, J., Aburano, H., Ikenaga, M., and Nakashima, M., 2008. Permissible residual deformation levels for building structures considering both safety and human elements. Proc. 14th World Conf. Earthquake Engineering, Seismological Press of China, Beijing, Paper ID 05-06-0071.
  • Narayan, S., Shrimali, M., Bharti, S.D. and Datta, T.K., 2023. Effects of aftershocks on the performance of steel building frames. Structures, 56, 104959. https://doi.org/10.1016/j.istruc.2023.104959
  • Pampanin, S., Christopoulos, C., and Priestley, M. J. N., 2003. Performance-based seismic response of frame structures including residual deformations. Part II: Multi-degree of freedom systems. Journal of Earthquake Engineering, 7, 1, 119–147. https://doi.org/10.1080/13632460309350444
  • PEER, 2009. Guidelines for Performance-Based Seismic Design of Tall Buildings, prepared by the Tall Buildings Initiative Guidelines Working Group for the Pacific Earthquake Engineering Research Center, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
  • Pettinga, D., Christopoulos, C., Pampanin, S., and Priestley, N. 2007. Effectiveness of simple approaches in mitigating residual deformations in buildings. Earthquake Engineering & Structural Dynamics, 36, 12, 1763–1783. https://doi.org/10.1002/eqe.717
  • Ramirez C.M. and Miranda E., 2012. Significance of residual drifts in building earthquake loss estimation. Earthquake Engineering & Structural Dynamics, 41, 11, 1477–1493 https://doi.org/10.1002/eqe.2217
  • Ruiz-Garcia, J. and Miranda, E., 2006a. Evaluation of residual drift demands in regular multi-story frames for performance-based seismic assessment. Earthquake Engineering & Structural Dynamics, 35, 1609–1629. https://doi.org/10.1002/eqe.593
  • Ruiz-Garcia, J. and Miranda, E., 2006b. Residual displacement ratios forassessment of existing structures.” Earthquake Engineering & Structural Dynamics, 35, 315–336. https://doi.org/10.1002/eqe.523
  • SeismoMatch, 2023. A program for spectral matching of earthquake records, Seismosoft-Earthquake Engineering Software Solutions.
  • SEOAC, 1995. Performance Based Seismic Engineering of Buildings: Vision 2000, Structural Engineers Association of California, USA.
  • Tremblay, R., Lacerte, M. and Christopoulos, C. (2008). Seismic responseof multistory buildings with self-centering energy dissipative steel braces. Journal of Structtural Engineering, 134, 1, 108–120. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(108)
  • Wu, C.-L., Loh, C.-H., Yang, Y.-S. and Lin, C. H., 2004. Consideration of collapse and residual deformation in reliability-based performance evaluation of buildings. Proc. 13th World Conf. on Earthquake Engineering, Canadian Association for Earthquake Engineering (CAEE), Vancouver, Canada, Paper No. 716.
  • https://peer.berkeley.edu/peer-strong-ground-motion-databases (05.01.2023)

Performance Evaluation Including Residual Drifts on a Steel Building Designed Building Earthquake Code of Türkiye

Year 2024, , 660 - 673, 27.06.2024
https://doi.org/10.35414/akufemubid.1388878

Abstract

Post-earthquake observations and numerical/experimental studies show that if the residual drifts in buildings exceed certain limits, buildings may become unusable and cause total loss of building. In this context, residual drifts should also be included in performance evaluations to reduce economic losses. In this study, on a steel building designed to Building Earthquake Code of Türkiye (BECT), the adequacy of the basic performance levels included in BECT was evaluated in terms of residual drifts. Investigated building is four-story and its structural system consists of Moment Resisting Frames (MRF) and Concentrically Braced Frames (CBF) located around the perimeter of the building. The building was investigated by bi-directional nonlinear dynamic analysis for two ground motions set representing the design level earthquake and the maximum earthquake level. The building has achieved the performance level stipulated in the BECT for the design level earthquake. Although the performance evaluations of the MRF system indicated very low levels of damage (limited damage), the residual drifts of MRF system shown that the building had the potential to become unusable after the earthquake. The performance evaluations in the CBF system indicated greater damage levels compared to the MRF system, but gave much better results in terms of residual drifts. The post-buckling cyclic behavior of slender braces was effective in the residual drift results.

References

  • AFAD, 2018. Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • AISC, 2010. Seismic Provisions for Structural Steel Buildings ANSI/AISC 341-10, American Institute of Steel Construction, Chicago, Illinois, USA.
  • Al-Atik L., Abrahamson N.A., 2010. An improved method for nonstationary spectral matching, Earthquake Spectra, Vol. 26, 6, pp. 601-617. https://doi.org/10.1193/1.3459159
  • Anderson JC, Fillipou FC, 1995. Dynamic response analysis of the 17-story canoga building, SAC technical report 95-04, pp 12-1–12-53.
  • ASCE, 2017. Seismic Evaluation and Retrofit of Existing Buildings: ASCE Standard ASCE/SEI 41-17, American Society of Civil Engineers Reston, VA, USA.
  • ASCE, 2022. Minimum Design Loads for Buildigs and Other Structures. American Society of Civil Engineers ASCE/SEI 7-2022, Reston, VA, USA.
  • Asgarkhani, N., Yakhchalian, M. and Mohebi, B., 2020. Evaluation of approximate methods for estimating residual drift demands in BRBFs. Engineering Structures, 224, 110849. https://doi.org/10.1016/j.engstruct.2020.110849
  • ATC, 1996. Seismic Evaluation and Retrofit of Concrete Buildings: ATC 40, Vol. 1, Applied Technology Council, Washington DC., USA.
  • Basim, M.C, Pourreza, F., Mousazadeh, M. and Hamed, A.A., 2022. The effects of modeling uncertainties on the residual drift of steel structures under mainshock-aftershock sequences. Structures, 36, 912–926. https://doi.org/10.1016/j.istruc.2021.12.050
  • Bruneau, M., Uang, C.M. and Sabelli, R. 2011, Ductile design of steel structures, Second edition, McGraw-Hill, 499-563.
  • Christopoulos, C., Pampanin, S. and Priestley, M. J. N., 2003. Performance-based seismic response of frame structures including residualdeformations. Part I: Single degree of freedom systems, Journal of Earthquake Engineering, 7, 1, 97–118. https://doi.org/10.1080/13632460309350443
  • Christopoulos, C. and Pampanin, S., 2004. Towards performance-based design of MDOF structures with explicit consideration on residual deformations. ISET Journal of Earthquake Technology, 41, 1, 53–73.
  • Comartin, C., Green, M., and Tubbesing, S., 1995. The Hyogoken-Nanbu Earthquake. Preliminary Reconnaissance Report, Earthquake Engineering Research Institute, Oakland CA, USA.
  • CSI, 2008. SAP2000 Structural Analysis Programs - User’s Manual, Computers and Structures Berkeley California, USA.
  • CSI, 2023. PERFORM-3D Computer Software. Computers and Structures, Berkeley, California, USA.
  • ÇŞB, 2016. Çelik Yapıların Tasarım Hesap ve Yapımına Dair Esaslar (ÇYTHYDE), Çevre ve Şehircilik Bakanlığı Ankara.
  • Eguchi R.T., Goltz J.D. and Taylor C.E., 1998. Direct economic losses in the Northridge Earthquake: A Three-Year Post-Event Perspective. Earthquake Spectra, 14, 2, 245-264. https://doi.org/10.1193/1.1585998
  • Erochko J., Christopoulos C., Tremblay R. and Choi H., 2011. Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7–05. Journal of Structural Engineering, 137, 5, 589–599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000296
  • FEMA, 1997. NEHRP Guidelines for the Seismic Rehabilitation of Buildings: FEMA 273, Federal Emergancy Management Agency Washington, D.C., USA.
  • Garlock, M., Ricles, J. and Sause, R., 2005. Experimental studies of full scale posttensioned steel connections. Journal of Structural Engineering, 131, 3, 438–448. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(438
  • Hancock J., Bommer J.J. and Stafford P.J., 2008. Numbers of scaled and matched accelerograms required for inelastic dynamic analyses. Earthquake Engineering and Structural Dynamics, 37, 1585-1607. https://doi.org/10.1002/eqe.827
  • Hu, S., Wang, W. and Qu, B., 2020. Seismic economic losses in mid-rise steel buildings with conventional and emerging lateral force resisting systems. Engineering Structures, 204, 110021. https://doi.org/10.1016/j.engstruct.2019.110021
  • Kamaris, G.S., Papavasileiou, G.S., Kamperidis, V.C. and Vasdravellis, G., 2022. Residual drift risk of self-centering steel MRFs with novel steel column bases in near-fault regions. Soil Dynamics and Earthquake Engineering, 162, 107391. https://doi.org/10.1016/j.soildyn.2022.107391
  • Kim, H.-J. and Christopoulos, C., 2008. Friction damped posttensioned self-centering steel moment-resisting frames. Journal of Structtural Engineering, 134, 11, 1768–1779. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1768)
  • McCormick, J., Aburano, H., Ikenaga, M., and Nakashima, M., 2008. Permissible residual deformation levels for building structures considering both safety and human elements. Proc. 14th World Conf. Earthquake Engineering, Seismological Press of China, Beijing, Paper ID 05-06-0071.
  • Narayan, S., Shrimali, M., Bharti, S.D. and Datta, T.K., 2023. Effects of aftershocks on the performance of steel building frames. Structures, 56, 104959. https://doi.org/10.1016/j.istruc.2023.104959
  • Pampanin, S., Christopoulos, C., and Priestley, M. J. N., 2003. Performance-based seismic response of frame structures including residual deformations. Part II: Multi-degree of freedom systems. Journal of Earthquake Engineering, 7, 1, 119–147. https://doi.org/10.1080/13632460309350444
  • PEER, 2009. Guidelines for Performance-Based Seismic Design of Tall Buildings, prepared by the Tall Buildings Initiative Guidelines Working Group for the Pacific Earthquake Engineering Research Center, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
  • Pettinga, D., Christopoulos, C., Pampanin, S., and Priestley, N. 2007. Effectiveness of simple approaches in mitigating residual deformations in buildings. Earthquake Engineering & Structural Dynamics, 36, 12, 1763–1783. https://doi.org/10.1002/eqe.717
  • Ramirez C.M. and Miranda E., 2012. Significance of residual drifts in building earthquake loss estimation. Earthquake Engineering & Structural Dynamics, 41, 11, 1477–1493 https://doi.org/10.1002/eqe.2217
  • Ruiz-Garcia, J. and Miranda, E., 2006a. Evaluation of residual drift demands in regular multi-story frames for performance-based seismic assessment. Earthquake Engineering & Structural Dynamics, 35, 1609–1629. https://doi.org/10.1002/eqe.593
  • Ruiz-Garcia, J. and Miranda, E., 2006b. Residual displacement ratios forassessment of existing structures.” Earthquake Engineering & Structural Dynamics, 35, 315–336. https://doi.org/10.1002/eqe.523
  • SeismoMatch, 2023. A program for spectral matching of earthquake records, Seismosoft-Earthquake Engineering Software Solutions.
  • SEOAC, 1995. Performance Based Seismic Engineering of Buildings: Vision 2000, Structural Engineers Association of California, USA.
  • Tremblay, R., Lacerte, M. and Christopoulos, C. (2008). Seismic responseof multistory buildings with self-centering energy dissipative steel braces. Journal of Structtural Engineering, 134, 1, 108–120. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(108)
  • Wu, C.-L., Loh, C.-H., Yang, Y.-S. and Lin, C. H., 2004. Consideration of collapse and residual deformation in reliability-based performance evaluation of buildings. Proc. 13th World Conf. on Earthquake Engineering, Canadian Association for Earthquake Engineering (CAEE), Vancouver, Canada, Paper No. 716.
  • https://peer.berkeley.edu/peer-strong-ground-motion-databases (05.01.2023)
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other)
Journal Section Articles
Authors

Kaan Türker 0000-0002-3106-4627

Aykut Sayılır 0000-0002-1745-2981

Early Pub Date June 8, 2024
Publication Date June 27, 2024
Submission Date November 10, 2023
Acceptance Date May 12, 2024
Published in Issue Year 2024

Cite

APA Türker, K., & Sayılır, A. (2024). Türkiye Bina Deprem Yönetmeliğine Göre Tasarlanmış Çelik Binada Kalıcı Ötelemeleri İçeren Performans Değerlendirmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(3), 660-673. https://doi.org/10.35414/akufemubid.1388878
AMA Türker K, Sayılır A. Türkiye Bina Deprem Yönetmeliğine Göre Tasarlanmış Çelik Binada Kalıcı Ötelemeleri İçeren Performans Değerlendirmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2024;24(3):660-673. doi:10.35414/akufemubid.1388878
Chicago Türker, Kaan, and Aykut Sayılır. “Türkiye Bina Deprem Yönetmeliğine Göre Tasarlanmış Çelik Binada Kalıcı Ötelemeleri İçeren Performans Değerlendirmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 3 (June 2024): 660-73. https://doi.org/10.35414/akufemubid.1388878.
EndNote Türker K, Sayılır A (June 1, 2024) Türkiye Bina Deprem Yönetmeliğine Göre Tasarlanmış Çelik Binada Kalıcı Ötelemeleri İçeren Performans Değerlendirmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 3 660–673.
IEEE K. Türker and A. Sayılır, “Türkiye Bina Deprem Yönetmeliğine Göre Tasarlanmış Çelik Binada Kalıcı Ötelemeleri İçeren Performans Değerlendirmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, pp. 660–673, 2024, doi: 10.35414/akufemubid.1388878.
ISNAD Türker, Kaan - Sayılır, Aykut. “Türkiye Bina Deprem Yönetmeliğine Göre Tasarlanmış Çelik Binada Kalıcı Ötelemeleri İçeren Performans Değerlendirmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/3 (June 2024), 660-673. https://doi.org/10.35414/akufemubid.1388878.
JAMA Türker K, Sayılır A. Türkiye Bina Deprem Yönetmeliğine Göre Tasarlanmış Çelik Binada Kalıcı Ötelemeleri İçeren Performans Değerlendirmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:660–673.
MLA Türker, Kaan and Aykut Sayılır. “Türkiye Bina Deprem Yönetmeliğine Göre Tasarlanmış Çelik Binada Kalıcı Ötelemeleri İçeren Performans Değerlendirmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, 2024, pp. 660-73, doi:10.35414/akufemubid.1388878.
Vancouver Türker K, Sayılır A. Türkiye Bina Deprem Yönetmeliğine Göre Tasarlanmış Çelik Binada Kalıcı Ötelemeleri İçeren Performans Değerlendirmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(3):660-73.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.