Research Article
BibTex RIS Cite

Düşük Maliyetli ve Kayış Aktarmalı 3B Baskılı Şırınga Pompası Tasarımı

Year 2024, , 749 - 757, 27.06.2024
https://doi.org/10.35414/akufemubid.1400218

Abstract

Biyoteknoloji, biyomedikal ve biyomühendislik gibi araştırma alanlarında, sıvıların hassas bir şekilde transferi ve kontrolü temel bir gerekliliktir. Bu amaçla çeşitli pompa ve akışkan kontrol sistemleri laboratuvarlarda kullanılmaktadır. Biyolojik sıvılarla çalışmaya uygunluğu nedeniyle şırınga pompaları daha çok tercih edilmektedir. Mevcut ticari şırınga pompalar, yüksek maliyetleri ve isteğe bağlı olarak yazılım veya fiziksel modifikasyonlar yapmanın zor olması dezavantajlarına sahiptir. Araştırmacılar bu nedenle, üç boyutlu yazıcı teknolojisi ve açık kaynak elektronik imkanlarını kullanarak kendi pompalarını tasarlayıp kullanmaya başlamıştır. Geliştirilen bu özelleştirilmiş pompalarda yaygın olarak doğrusal sürücü ve metal vidalı miller kullanılmaktadır, bu bileşenler pahalıdır ve bu yöntemle üretilen cihazların ağırlığı artmaktadır. Ayrıca bu yöntemde, milin hatveleri arasındaki oynama payından kaynaklı olarak geri tepme hatası oluşabilmekte ve bu da hassaslığı etkilemektedir. Bu çalışmada, kayış aktarma yöntemine dayanan ve metal parça kullanımının en aza indirildiği bir üç boyutlu şırınga pompası tasarlanmış; düşük maliyetli ve daha hafif bir şırınga pompası tasarımı gösterilmiştir. Geliştirdiğimiz pompa 10 mikrolitrenin altında hassaslığa sahiptir, ağırlığı 250 gramın altındadır ve maliyeti düşüktür (<41$). Çalışmamız sonucunda kısıtlı şartlara sahip olunan durumlarda, dışarıya en az bağımlılıkla üç boyutlu şırınga pompası üretme hedefine katkıda bulunulmuştur.

References

  • Ağır İ., 2023. Using the 3D printer as a programmable syringe pump. The ICASEM 4th International Applied Sciences, Engineering, and Mathematics Congress. Tekirdağ, Türkiye, 215–223.
  • Baas S., Saggiomo V., 2021. Ender3 3D printer kit transformed into open, programmable syringe pump set. HardwareX, 10, e00219. https://doi.org/10.1016/j.ohx.2021.e00219
  • Barik BB, Mahanty A, Majumder SD, Roy Goswami A., 2023. Fabrication of Cost-effective Three-axis portable mini-CNC milling Machine. Mater Today: Proceedings. (Article in press) https://dx.doi.org/10.1016/j.matpr.2023.03.012
  • Beaman JJ, Bourell DL, Seepersad CC, Kovar D., 2020. Additive Manufacturing Review: Early Past to Current Practice. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 142(11), 110812-20. https://dx.doi.org/10.1115/1.4048193
  • Bolat Ç., Ergene B., Ispartall H., 2023. A comparative analysis of the effect of post-production treatments and layer thickness on tensile and impact properties of additively manufactured polymers. International Polymer Processing, 38(2), 244-256. https://dx.doi.org/10.1515/ipp-2022-4267
  • Booeshaghi AS, Beltrame E da V, Bannon D, Gehring J, Pachter L., 2019. Principles of open-source bioinstrumentation applied to the poseidon syringe pump system. Scientific Reports, 9(1):1–8. https://dx.doi.org/10.1038/s41598-019-48815-9
  • Cubberley MS, Hess WA., 2017. An inexpensive programmable dual-syringe pump for the chemistry laboratory. J Chem Educ, 94(1):72–74. https://dx.doi.org/10.1021/acs.jchemed.6b00598
  • Darling C., Smith DA., 2021. Syringe pump extruder and curing system for 3D printing of photopolymers. HardwareX, 9: e00175. https://dx.doi.org/10.1016/j.ohx.2021.e00175
  • Ergene B., 2022. Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method. Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (1), 469 - 484 https://dx.doi.org/10.17341/GAZIMMFD.934143
  • Ergene B., Atlıhan G., Pinar AM., 2023. Experimental and finite element analyses on the vibration behavior of 3D-printed PET-G tapered beams with fused filament fabrication. Multidiscipline Modeling in Materials and Structures, 19(4), 634-651. https://dx.doi.org/10.1108/MMMS-11-2022-0265
  • Ergene B., Bolat Ç., 2022. An experimental investigation on the effect of test speed on the tensile properties of the PETG produced by additive manufacturing. International Journal of 3D Printing Technologies and Digital Industry, 6(2), 250-260. https://dx.doi.org/10.46519/ij3dptdi.1069544
  • Garcia VE, Liu J, DeRisi JL., 2018. Low-cost touchscreen driven programmable dual syringe pump for life science applications. HardwareX, 4, e00027. https://dx.doi.org/10.1016/j.ohx.2018.e00027
  • Gervasi A., Cardol P., Meyer PE., 2021. Open-hardware wireless controller and 3D-printed pumps for efficient liquid manipulation. HardwareX, 9, e00199. https://dx.doi.org/10.1016/j.ohx.2021.e00199
  • Gucluer S., 2023. A Miniaturized Archimedean Screw Pump for High-Viscosity Fluid Pumping in Microfluidics. Micromachines, 14(7):1409 https://dx.doi.org/10.3390/mi14071409
  • Juarez A, Maynard K, Skerrett E, Molyneux E, Richards-Kortum R, Dube Q, Maria Oden Z., 2016. AutoSyP: A Low-Cost, Low-Power Syringe Pump for Use in Low-Resource Settings. Am J Trop Med Hyg., 95(4), 964-969. https://dx.doi.org/10.4269/ajtmh.16-0285
  • Kashaninejad N, Nguyen NT., 2023. Microfluidic solutions for biofluids handling in on-skin wearable systems. Lab Chip, 23(5), 913–937. https://dx.doi.org/10.1039/d2lc00993e
  • Khalid MS, Jaleed SM, Zafar A, Khan SA, Ur Rehman HZ, Khan ZH., 2023. Design and Experimental Verification of a Laser Engraving Machine. 2023 International Conference on Emerging Power Technologies. Topi, Pakistan, 1-6. https://doi.org/10.1109/ICEPT58859.2023.10152428
  • Klar V, Pearce JM, Kärki P, Kuosmanen P., 2019. Ystruder: Open source multifunction extruder with sensing and monitoring capabilities. HardwareX, 6, e00080. https://dx.doi.org/10.1016/j.ohx.2019.e00080
  • Kukla M, Tarkowski P, Malujda I, Talaśka K, Górecki J., 2016. Determination of the torque characteristics of a stepper motor. Procedia Engineering, 136, 375-379. https://dx.doi.org/10.1016/j.proeng.2016.01.226
  • Lake JR, Heyde KC, Ruder WC., 2017. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications. PLoS One, 12(4), e0175089-12. https://doi.org/10.1371/journal.pone.0175089
  • Leuthner, M., & Hayden, O., 2024. Grease the gears: how lubrication of syringe pumps impacts microfluidic flow precision. Lab on a Chip, 24(1), 56-62. https://doi.org/10.1039/D3LC00698K
  • Liu DS, Lin PC, Lin JJ, Wang CR, Shiau TN., 2019. Effect of environmental temperature on dynamic behavior of an adjustable preload double-nut ball screw. International Journal of Advanced Manufacturing Technology, 101, 2761–2770. https://dx.doi.org/10.1007/s00170-018-2966-x
  • Luo W, Liu G, Wang H., 2022. Study on Anti-backlash Mechanism Used in Precise Transmission: A Review. Mechanisms and Machine Science. 111, 449–1470. https://dx.doi.org/10.1007/978-981-16-7381-8_89
  • Mapley M, Lu Y, Gregory SD, Pauls JP, Tansley G, Busch A., 2020. Development and validation of a low-cost polymer selective laser sintering machine. HardwareX, 8. e00119. https://dx.doi.org/10.1016/j.ohx.2020.e00119
  • Ozer T, Agir I, Henry CS., 2022. Rapid prototyping of ion-selective electrodes using a low-cost 3D printed internet-of-things (IoT) controlled robot. Talanta, 247, 123544-8. https://dx.doi.org/10.1016/j.talanta.2022.123544
  • Pusch K, Hinton TJ, Feinberg AW., 2018. Large volume syringe pump extruder for desktop 3D printers. HardwareX, 3, 49–61. https://dx.doi.org/10.1016/j.ohx.2018.02.001
  • Rogosic R, Poloni M, Marroquin-Garcia R, Dimech D, Passariello Jansen J, Cleij TJ, Eersels K, van Grinsven B, Diliën H., 2022. Cost-effective, scalable and smartphone-controlled 3D-Printed syringe pump - From lab bench to point of care biosensing applications. Physics in Medicine, 14, 100051-6 https://dx.doi.org/10.1016/j.phmed.2022.100051
  • Samokhin AS., 2020. Syringe Pump Created using 3D Printing Technology and Arduino Platform. Journal of Analytical Chemistry, 75(3), 416–421. https://dx.doi.org/10.1134/S1061934820030156
  • Schreiber DA, Richter F, Bilan A, Gavrilov P V., Man Lam H, Price CH, Carpenter KC, Yip MC., 2020. ARCSnake: An Archimedes’ Screw-Propelled, Reconfigurable Serpentine Robot for Complex Environments. 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France, 7029-7034. https://doi.org/10.1109/ICRA40945.2020.9196968
  • Shah J, Snider B, Clarke T, Kozutsky S, Lacki M, Hosseini A., 2019. Large-scale 3D printers for additive manufacturing: design considerations and challenges. International Journal of Advanced Manufacturing Technology. 104, 3679–3693. https://doi.org/10.1007/s00170-019-04074-6
  • Tashman JW, Shiwarski DJ, Feinberg AW., 2022. Development of a high-performance open-source 3D bioprinter. Scientific Reports, 12, 1–9. https://doi.org/10.1038/s41598-022-26809-4
  • Wang B, Si Y, Chadha C, Allison JT, Patterson AE., 2018. Nominal Stiffness of GT-2 Rubber-Fiberglass Timing Belts for Dynamic System Modeling and Design. Robotics, 7(4), 75. https://dx.doi.org/10.1038/s41598-022-26809-4
  • Wang Y, Li L, Ang WT, Gan L, Wang L, Huang F., 2023. Adaptive Backlash Compensation for CNC Machining Applications. Machines, 11, 193-14. https://dx.doi.org/10.3390/machines11020193

Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump

Year 2024, , 749 - 757, 27.06.2024
https://doi.org/10.35414/akufemubid.1400218

Abstract

In biotechnology, biomedicine, and bioengineering research, precise liquid transfer and control are essential. Laboratories depend on diverse pumps and fluid control systems, with syringe pumps emerging as a preferred option due to their compatibility with biological fluids. Due to the high cost and limited customization options in existing commercial syringe pumps, researchers have begun designing their own custom devices, utilizing the expanding 3D printing technology and open-source electronics. Nevertheless, 3D-printed pumps often integrate metal components such as lead screws and rods to create linear drives, leading to heightened costs and increased overall weight. Furthermore, lead screws can introduce backlash errors, affecting precision due to play between the threads of the nut. In this study, a 3D-printed syringe pump design is introduced based on the belt drive method, with a focus on minimizing the incorporation of metal components. Not only is cost reduction achieved by new design, but it also results in a lighter syringe pump while minimizing backlash errors. A sensitivity below 10 microliters, a cost of less than $41, and a weight under 250 grams were achieved by the newly designed pump. The effort to develop a 3D-printed custom syringe pump, which reduces reliance on external sources, particularly in constrained environments, is strengthened by the reduction of dependency on metal parts and the increased utilization of 3D printed components.

References

  • Ağır İ., 2023. Using the 3D printer as a programmable syringe pump. The ICASEM 4th International Applied Sciences, Engineering, and Mathematics Congress. Tekirdağ, Türkiye, 215–223.
  • Baas S., Saggiomo V., 2021. Ender3 3D printer kit transformed into open, programmable syringe pump set. HardwareX, 10, e00219. https://doi.org/10.1016/j.ohx.2021.e00219
  • Barik BB, Mahanty A, Majumder SD, Roy Goswami A., 2023. Fabrication of Cost-effective Three-axis portable mini-CNC milling Machine. Mater Today: Proceedings. (Article in press) https://dx.doi.org/10.1016/j.matpr.2023.03.012
  • Beaman JJ, Bourell DL, Seepersad CC, Kovar D., 2020. Additive Manufacturing Review: Early Past to Current Practice. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 142(11), 110812-20. https://dx.doi.org/10.1115/1.4048193
  • Bolat Ç., Ergene B., Ispartall H., 2023. A comparative analysis of the effect of post-production treatments and layer thickness on tensile and impact properties of additively manufactured polymers. International Polymer Processing, 38(2), 244-256. https://dx.doi.org/10.1515/ipp-2022-4267
  • Booeshaghi AS, Beltrame E da V, Bannon D, Gehring J, Pachter L., 2019. Principles of open-source bioinstrumentation applied to the poseidon syringe pump system. Scientific Reports, 9(1):1–8. https://dx.doi.org/10.1038/s41598-019-48815-9
  • Cubberley MS, Hess WA., 2017. An inexpensive programmable dual-syringe pump for the chemistry laboratory. J Chem Educ, 94(1):72–74. https://dx.doi.org/10.1021/acs.jchemed.6b00598
  • Darling C., Smith DA., 2021. Syringe pump extruder and curing system for 3D printing of photopolymers. HardwareX, 9: e00175. https://dx.doi.org/10.1016/j.ohx.2021.e00175
  • Ergene B., 2022. Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method. Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (1), 469 - 484 https://dx.doi.org/10.17341/GAZIMMFD.934143
  • Ergene B., Atlıhan G., Pinar AM., 2023. Experimental and finite element analyses on the vibration behavior of 3D-printed PET-G tapered beams with fused filament fabrication. Multidiscipline Modeling in Materials and Structures, 19(4), 634-651. https://dx.doi.org/10.1108/MMMS-11-2022-0265
  • Ergene B., Bolat Ç., 2022. An experimental investigation on the effect of test speed on the tensile properties of the PETG produced by additive manufacturing. International Journal of 3D Printing Technologies and Digital Industry, 6(2), 250-260. https://dx.doi.org/10.46519/ij3dptdi.1069544
  • Garcia VE, Liu J, DeRisi JL., 2018. Low-cost touchscreen driven programmable dual syringe pump for life science applications. HardwareX, 4, e00027. https://dx.doi.org/10.1016/j.ohx.2018.e00027
  • Gervasi A., Cardol P., Meyer PE., 2021. Open-hardware wireless controller and 3D-printed pumps for efficient liquid manipulation. HardwareX, 9, e00199. https://dx.doi.org/10.1016/j.ohx.2021.e00199
  • Gucluer S., 2023. A Miniaturized Archimedean Screw Pump for High-Viscosity Fluid Pumping in Microfluidics. Micromachines, 14(7):1409 https://dx.doi.org/10.3390/mi14071409
  • Juarez A, Maynard K, Skerrett E, Molyneux E, Richards-Kortum R, Dube Q, Maria Oden Z., 2016. AutoSyP: A Low-Cost, Low-Power Syringe Pump for Use in Low-Resource Settings. Am J Trop Med Hyg., 95(4), 964-969. https://dx.doi.org/10.4269/ajtmh.16-0285
  • Kashaninejad N, Nguyen NT., 2023. Microfluidic solutions for biofluids handling in on-skin wearable systems. Lab Chip, 23(5), 913–937. https://dx.doi.org/10.1039/d2lc00993e
  • Khalid MS, Jaleed SM, Zafar A, Khan SA, Ur Rehman HZ, Khan ZH., 2023. Design and Experimental Verification of a Laser Engraving Machine. 2023 International Conference on Emerging Power Technologies. Topi, Pakistan, 1-6. https://doi.org/10.1109/ICEPT58859.2023.10152428
  • Klar V, Pearce JM, Kärki P, Kuosmanen P., 2019. Ystruder: Open source multifunction extruder with sensing and monitoring capabilities. HardwareX, 6, e00080. https://dx.doi.org/10.1016/j.ohx.2019.e00080
  • Kukla M, Tarkowski P, Malujda I, Talaśka K, Górecki J., 2016. Determination of the torque characteristics of a stepper motor. Procedia Engineering, 136, 375-379. https://dx.doi.org/10.1016/j.proeng.2016.01.226
  • Lake JR, Heyde KC, Ruder WC., 2017. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications. PLoS One, 12(4), e0175089-12. https://doi.org/10.1371/journal.pone.0175089
  • Leuthner, M., & Hayden, O., 2024. Grease the gears: how lubrication of syringe pumps impacts microfluidic flow precision. Lab on a Chip, 24(1), 56-62. https://doi.org/10.1039/D3LC00698K
  • Liu DS, Lin PC, Lin JJ, Wang CR, Shiau TN., 2019. Effect of environmental temperature on dynamic behavior of an adjustable preload double-nut ball screw. International Journal of Advanced Manufacturing Technology, 101, 2761–2770. https://dx.doi.org/10.1007/s00170-018-2966-x
  • Luo W, Liu G, Wang H., 2022. Study on Anti-backlash Mechanism Used in Precise Transmission: A Review. Mechanisms and Machine Science. 111, 449–1470. https://dx.doi.org/10.1007/978-981-16-7381-8_89
  • Mapley M, Lu Y, Gregory SD, Pauls JP, Tansley G, Busch A., 2020. Development and validation of a low-cost polymer selective laser sintering machine. HardwareX, 8. e00119. https://dx.doi.org/10.1016/j.ohx.2020.e00119
  • Ozer T, Agir I, Henry CS., 2022. Rapid prototyping of ion-selective electrodes using a low-cost 3D printed internet-of-things (IoT) controlled robot. Talanta, 247, 123544-8. https://dx.doi.org/10.1016/j.talanta.2022.123544
  • Pusch K, Hinton TJ, Feinberg AW., 2018. Large volume syringe pump extruder for desktop 3D printers. HardwareX, 3, 49–61. https://dx.doi.org/10.1016/j.ohx.2018.02.001
  • Rogosic R, Poloni M, Marroquin-Garcia R, Dimech D, Passariello Jansen J, Cleij TJ, Eersels K, van Grinsven B, Diliën H., 2022. Cost-effective, scalable and smartphone-controlled 3D-Printed syringe pump - From lab bench to point of care biosensing applications. Physics in Medicine, 14, 100051-6 https://dx.doi.org/10.1016/j.phmed.2022.100051
  • Samokhin AS., 2020. Syringe Pump Created using 3D Printing Technology and Arduino Platform. Journal of Analytical Chemistry, 75(3), 416–421. https://dx.doi.org/10.1134/S1061934820030156
  • Schreiber DA, Richter F, Bilan A, Gavrilov P V., Man Lam H, Price CH, Carpenter KC, Yip MC., 2020. ARCSnake: An Archimedes’ Screw-Propelled, Reconfigurable Serpentine Robot for Complex Environments. 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France, 7029-7034. https://doi.org/10.1109/ICRA40945.2020.9196968
  • Shah J, Snider B, Clarke T, Kozutsky S, Lacki M, Hosseini A., 2019. Large-scale 3D printers for additive manufacturing: design considerations and challenges. International Journal of Advanced Manufacturing Technology. 104, 3679–3693. https://doi.org/10.1007/s00170-019-04074-6
  • Tashman JW, Shiwarski DJ, Feinberg AW., 2022. Development of a high-performance open-source 3D bioprinter. Scientific Reports, 12, 1–9. https://doi.org/10.1038/s41598-022-26809-4
  • Wang B, Si Y, Chadha C, Allison JT, Patterson AE., 2018. Nominal Stiffness of GT-2 Rubber-Fiberglass Timing Belts for Dynamic System Modeling and Design. Robotics, 7(4), 75. https://dx.doi.org/10.1038/s41598-022-26809-4
  • Wang Y, Li L, Ang WT, Gan L, Wang L, Huang F., 2023. Adaptive Backlash Compensation for CNC Machining Applications. Machines, 11, 193-14. https://dx.doi.org/10.3390/machines11020193
There are 33 citations in total.

Details

Primary Language English
Subjects Bioengineering (Other)
Journal Section Articles
Authors

İsmail Ağır 0000-0003-2341-9245

Early Pub Date June 8, 2024
Publication Date June 27, 2024
Submission Date December 4, 2023
Acceptance Date May 8, 2024
Published in Issue Year 2024

Cite

APA Ağır, İ. (2024). Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(3), 749-757. https://doi.org/10.35414/akufemubid.1400218
AMA Ağır İ. Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2024;24(3):749-757. doi:10.35414/akufemubid.1400218
Chicago Ağır, İsmail. “Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 3 (June 2024): 749-57. https://doi.org/10.35414/akufemubid.1400218.
EndNote Ağır İ (June 1, 2024) Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 3 749–757.
IEEE İ. Ağır, “Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, pp. 749–757, 2024, doi: 10.35414/akufemubid.1400218.
ISNAD Ağır, İsmail. “Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/3 (June 2024), 749-757. https://doi.org/10.35414/akufemubid.1400218.
JAMA Ağır İ. Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:749–757.
MLA Ağır, İsmail. “Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 3, 2024, pp. 749-57, doi:10.35414/akufemubid.1400218.
Vancouver Ağır İ. Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(3):749-57.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.