Research Article
BibTex RIS Cite

VVER-1000 Reaktöründe Nanoakışkan Soğutucu ve Toryum İlaveli Yakıtın Yanmaya Bağlı İzotopik Kompozisyonlara Etkisi

Year 2024, , 986 - 992, 20.08.2024
https://doi.org/10.35414/akufemubid.1403049

Abstract

Son zamanlarda nükleer teknolojide güvenlik faktörlerine dikkat edilerek reaktör verimliliğinin artırılmasına yönelik çalışmalarda nanoakışkanların kullanımı önem kazanmıştır. Geleneksel UO2 yakıtlarını kullanan güç reaktörlerinde, soğutma suyuna farklı tür ve oranlarda nanopartiküller eklenerek termal ve nötronik karakteristikler üzerine etkilerinin incelendiği çalışmalar bulunmaktadır. Toryum kaynaklarının uranyum kaynaklarından çok daha fazla olduğu göz önüne alındığında toryum bazlı yakıtlara yönelik çalışmalar giderek önem kazanmaktadır. Bu çalışmada, yakıt olarak kütlece %5 ThO2 ve %95 UO2 ve soğutucu olarak hacimce %0,1 Al2O3, CuO ve TiO2 nanopartikülleri yüklenen VVER-1000 reaktöründeki kritiklik ve izotop değişiklikleri araştırılmıştır. Analizlerde MCNP5 ve MONTEBURNS2.0 nötronik analiz kodları kullanılmıştır. Analiz sonucu, nanopartiküllerin etkisiyle sadece su soğutucu ve toryum bazlı yakıtın bulunduğu reaktörün çalışma süresinin kısaldığını göstermiştir. Ayrıca 235U ve 238U izotop miktarında önemli bir değişiklik olmadığı ancak nanopartiküllerin soğutucuya eklenmesiyle reaktörde tüketilen 232Th izotop miktarının arttığı gözlemlenmiştir.

References

  • Galahom, A, 2020. Investigate the possibility of burning weapon-grade plutonium using a concentric rods BS assembly of VVER-1200. Annals of Nuclear Energy, 148, 107758. https://doi.org/10.1016/j.anucene.2020.107758
  • Acır, A., Uzun, S., Genç, Y., Asal, Ş., 2021. Thermal Analysıs of the VVER-1000 Reactor with Thorium Fuel And Coolant Containing Al2O3, CuO, and TiO2 Nanoparticles. Heat Transfer Research, 52(4), 79-93. https://doi.org/10.1615/HeatTransRes.2021037215
  • Briesmeister J.F. Ed., 2020. MCNP: A General Monte Carlo N-Particle Transport Code, Report No. LA-13709M, Los Alamos National Laboratory, Washingtton, D.C., USA.
  • Dungan, K., Butler, G., Livens, F.R., Warren, L.M., 2017. Uranium from seawater – Infinite resource or improbable aspiration, Progress in Nuclear Energy, 99, 81-85. https://doi.org/10.1016/j.pnucene.2017.04.016
  • Dwiddar, M. S., Badawi, A. A., Abou-Gabal, H. H., and El-Osery, I. A., 2015. Investigation of different scenarios of thorium-uranium fuel distribution in the VVER-1200 first core. Annals of Nuclear Energy, 85, 605–612. https://doi.org/10.1016/j.anucene.2015.06.015
  • Fryort, J., 2014. Comparison of the radiological hazard of thorium and uranium spent fuels from VVER-1000 reactor. Radiat. Phys. Chem., 104, 408–413. https://doi.org/10.1016/j.radphyschem.2014.05.038
  • Ghazanfari, V., Talebi, M., Khorsandi, J., Abdolahi, R., 2016. Effects of water based Al2O3, TiO2, and CuO nanofluids as the coolant on solid and annular fuels for a typical VVER-1000 core. Progress in Nuclear Energy, 91, 285–294. https://doi.org/10.1016/j.pnucene.2016.05.007
  • Hadad, K., Hajizadeh, A., Jafarpour, K., Ganapol, B. D., 2010. Neutronic study of nanofluids application to VVER-1000. Annals of Nuclear Energy, 37, 11, 1447–1455. https://doi.org/10.1016/j.anucene.2010.06.020
  • Humphrey, U. E., Khandaker, M. U., 2018. Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects. Renewable and Sustainable Energy Reviews., 97, 259–275. https://doi.org/10.1016/j.rser.2018.08.019
  • IAEA, 2003. Configuration management in nuclear power plants. Iaea, January.
  • IAEA, 2005. Thorium fuel cycle-potential benefits and challenges. IAEATECDOC-1450.
  • Janos, T., 2011. Long-Term Operation of VVER Power Plants. Nucl. Power -Deployment, Nuclear Power- Deployment, Operation and Sustainability.
  • Kanik, M.E., Noori-kalkhoran, O., Fernández-Cosials, K., Gei M., 2022. Full scope 3D analysis of a VVER-1000 containment pressurization during a LB-LOCA by employing AutoCAD and GOTHIC code. Progress in Nuclear Energy, 152, 104376. https://doi.org/10.1016/j.pnucene.2022.104376
  • Kianpour, R., Ansarifar, G. R., 2019. Assessment of the nanofluid effects on the thermal reactivity feedback coefficients in the VVER-1000 nuclear reactor with nano-fluid as a coolant using thermal hydraulic and neutronics analysis, Annals of Nuclear Energy, 133, 623–636. https://doi.org/10.1016/j.anucene.2019.07.002
  • Ünak, T., 2020. What IS the potential use of thorium in the future energy production technology. Progress in Nuclear Energy, 37, 1–4, 137–144. https://doi.org/10.1016/S0149-1970(00)00038-X
  • Lau, C. W., Nylén, H., Insulander, B. K., and Sandberg, U., 2014. Feasibility study of 1/3 thorium-plutonium mixed oxide core. Science and Technology of Nuclear Installations. Install., 2014. https://doi.org/10.1155/2014/709415
  • Mustafa, S. S., Amin, E. A., 2019. Feasibility Study of Thorium - Plutonium Mixed Oxide Assembly In Light Water Reactors, Sci. Rep., 9, 1630. https://doi.org/10.1038/s41598-019-52560-4
  • Nourollahi, R., Esteki, M. H., Jahanfarnia, G., 2018. Neutronic analysis of a VVER-1000 reactor with nanofluid as coolant through zeroth order average current nodal expansion method. Progress in Nuclear Energy, 116, August, 46–61. https://doi.org/10.1016/j.pnucene.2019.03.016
  • ROSATOM, 2015. The VVER today. State At. Energy Corp. ROSATOM, p. 50, [Online].
  • Saadati, H., Hadad, K., and Rabiee, A., 2018. Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid. Nuclear Engineering and Technology, 50, 5, 639–647. https://doi.org/10.1016/j.net.2018.01.015
  • Şahin, S., Yildiz, K., Şahin, H. M., Acir, A., 2006. Investigation of CANDU reactors as a thorium burner. Energy Conversion and Management, 47, 13–14, 1661–1675. https://doi.org/10.1016/j.enconman.2005.10.013
  • Uzun, S., Genç, Y., Acır, A., 2022. Investigation of hybrid nanofluids effects on heat transfer characteristics in VVER-1000 nuclear reactor. Progress of Nuclear Energy, 154, 104489. https://doi.org/10.1016/j.pnucene.2022.104489
  • Van Gosen, B. S., Tulsidas, H., 2016. Thorium as a nuclear fuel. Elsevier Ltd. Editor(s): Ian Hore-Lacy, Uranium for Nuclear Power, Woodhead Publishing, 253-296.
  • Zarifi, E., Jahanfarnia, G., Veysi, F., 2013. Neutronic simulation of water-based nanofluids as a coolant in VVER-1000 reactor. Progress in Nuclear Energy,65, 32–41. https://doi.org/10.1016/j.pnucene.2013.01.004

The Effect of Nanofluid Coolant and Thorium-added Fuel on Burnup Dependent Isotopic Compositions in VVER-1000 Reactor

Year 2024, , 986 - 992, 20.08.2024
https://doi.org/10.35414/akufemubid.1403049

Abstract

Recently, the use of nanofluids has gained importance in studies aimed at increasing reactor efficiency while also addressing safety concerns in nuclear technology. Various studies have investigated the effects of adding nanoparticles of different types and proportions to the coolant water on the thermal and neutronic characteristics of power reactors using conventional UO2 fuels. Given the abundance of thorium compared to uranium, research on thorium-based fuels has become increasingly significant. In this study, the criticality and isotope changes in a VVER-1000 reactor loaded with 5% ThO2 and 95% UO2 by mass as fuel, and 0.1% by volume of Al2O3, CuO, and TiO2 nanoparticles as the coolant, were investigated. Neutronic analysis was performed using the MCNP5 and MONTEBURNS2.0 codes. The analysis results indicated that the operational lifespan of the reactor with only water coolant and thorium-based fuel was shortened due to the presence of nanoparticles. Furthermore, it was observed that while there was no significant change in the amount of fissile 235U and fertile 238U isotopes, the consumption of fertile 232Th isotope in the reactor increased with the insertion of nanoparticles into the coolant.

References

  • Galahom, A, 2020. Investigate the possibility of burning weapon-grade plutonium using a concentric rods BS assembly of VVER-1200. Annals of Nuclear Energy, 148, 107758. https://doi.org/10.1016/j.anucene.2020.107758
  • Acır, A., Uzun, S., Genç, Y., Asal, Ş., 2021. Thermal Analysıs of the VVER-1000 Reactor with Thorium Fuel And Coolant Containing Al2O3, CuO, and TiO2 Nanoparticles. Heat Transfer Research, 52(4), 79-93. https://doi.org/10.1615/HeatTransRes.2021037215
  • Briesmeister J.F. Ed., 2020. MCNP: A General Monte Carlo N-Particle Transport Code, Report No. LA-13709M, Los Alamos National Laboratory, Washingtton, D.C., USA.
  • Dungan, K., Butler, G., Livens, F.R., Warren, L.M., 2017. Uranium from seawater – Infinite resource or improbable aspiration, Progress in Nuclear Energy, 99, 81-85. https://doi.org/10.1016/j.pnucene.2017.04.016
  • Dwiddar, M. S., Badawi, A. A., Abou-Gabal, H. H., and El-Osery, I. A., 2015. Investigation of different scenarios of thorium-uranium fuel distribution in the VVER-1200 first core. Annals of Nuclear Energy, 85, 605–612. https://doi.org/10.1016/j.anucene.2015.06.015
  • Fryort, J., 2014. Comparison of the radiological hazard of thorium and uranium spent fuels from VVER-1000 reactor. Radiat. Phys. Chem., 104, 408–413. https://doi.org/10.1016/j.radphyschem.2014.05.038
  • Ghazanfari, V., Talebi, M., Khorsandi, J., Abdolahi, R., 2016. Effects of water based Al2O3, TiO2, and CuO nanofluids as the coolant on solid and annular fuels for a typical VVER-1000 core. Progress in Nuclear Energy, 91, 285–294. https://doi.org/10.1016/j.pnucene.2016.05.007
  • Hadad, K., Hajizadeh, A., Jafarpour, K., Ganapol, B. D., 2010. Neutronic study of nanofluids application to VVER-1000. Annals of Nuclear Energy, 37, 11, 1447–1455. https://doi.org/10.1016/j.anucene.2010.06.020
  • Humphrey, U. E., Khandaker, M. U., 2018. Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects. Renewable and Sustainable Energy Reviews., 97, 259–275. https://doi.org/10.1016/j.rser.2018.08.019
  • IAEA, 2003. Configuration management in nuclear power plants. Iaea, January.
  • IAEA, 2005. Thorium fuel cycle-potential benefits and challenges. IAEATECDOC-1450.
  • Janos, T., 2011. Long-Term Operation of VVER Power Plants. Nucl. Power -Deployment, Nuclear Power- Deployment, Operation and Sustainability.
  • Kanik, M.E., Noori-kalkhoran, O., Fernández-Cosials, K., Gei M., 2022. Full scope 3D analysis of a VVER-1000 containment pressurization during a LB-LOCA by employing AutoCAD and GOTHIC code. Progress in Nuclear Energy, 152, 104376. https://doi.org/10.1016/j.pnucene.2022.104376
  • Kianpour, R., Ansarifar, G. R., 2019. Assessment of the nanofluid effects on the thermal reactivity feedback coefficients in the VVER-1000 nuclear reactor with nano-fluid as a coolant using thermal hydraulic and neutronics analysis, Annals of Nuclear Energy, 133, 623–636. https://doi.org/10.1016/j.anucene.2019.07.002
  • Ünak, T., 2020. What IS the potential use of thorium in the future energy production technology. Progress in Nuclear Energy, 37, 1–4, 137–144. https://doi.org/10.1016/S0149-1970(00)00038-X
  • Lau, C. W., Nylén, H., Insulander, B. K., and Sandberg, U., 2014. Feasibility study of 1/3 thorium-plutonium mixed oxide core. Science and Technology of Nuclear Installations. Install., 2014. https://doi.org/10.1155/2014/709415
  • Mustafa, S. S., Amin, E. A., 2019. Feasibility Study of Thorium - Plutonium Mixed Oxide Assembly In Light Water Reactors, Sci. Rep., 9, 1630. https://doi.org/10.1038/s41598-019-52560-4
  • Nourollahi, R., Esteki, M. H., Jahanfarnia, G., 2018. Neutronic analysis of a VVER-1000 reactor with nanofluid as coolant through zeroth order average current nodal expansion method. Progress in Nuclear Energy, 116, August, 46–61. https://doi.org/10.1016/j.pnucene.2019.03.016
  • ROSATOM, 2015. The VVER today. State At. Energy Corp. ROSATOM, p. 50, [Online].
  • Saadati, H., Hadad, K., and Rabiee, A., 2018. Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid. Nuclear Engineering and Technology, 50, 5, 639–647. https://doi.org/10.1016/j.net.2018.01.015
  • Şahin, S., Yildiz, K., Şahin, H. M., Acir, A., 2006. Investigation of CANDU reactors as a thorium burner. Energy Conversion and Management, 47, 13–14, 1661–1675. https://doi.org/10.1016/j.enconman.2005.10.013
  • Uzun, S., Genç, Y., Acır, A., 2022. Investigation of hybrid nanofluids effects on heat transfer characteristics in VVER-1000 nuclear reactor. Progress of Nuclear Energy, 154, 104489. https://doi.org/10.1016/j.pnucene.2022.104489
  • Van Gosen, B. S., Tulsidas, H., 2016. Thorium as a nuclear fuel. Elsevier Ltd. Editor(s): Ian Hore-Lacy, Uranium for Nuclear Power, Woodhead Publishing, 253-296.
  • Zarifi, E., Jahanfarnia, G., Veysi, F., 2013. Neutronic simulation of water-based nanofluids as a coolant in VVER-1000 reactor. Progress in Nuclear Energy,65, 32–41. https://doi.org/10.1016/j.pnucene.2013.01.004
There are 24 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Yasin Genç 0000-0002-2786-4824

Sinem Uzun 0000-0002-2814-1062

Adem Acır 0000-0002-9856-3623

Early Pub Date July 23, 2024
Publication Date August 20, 2024
Submission Date December 11, 2023
Acceptance Date June 11, 2024
Published in Issue Year 2024

Cite

APA Genç, Y., Uzun, S., & Acır, A. (2024). The Effect of Nanofluid Coolant and Thorium-added Fuel on Burnup Dependent Isotopic Compositions in VVER-1000 Reactor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(4), 986-992. https://doi.org/10.35414/akufemubid.1403049
AMA Genç Y, Uzun S, Acır A. The Effect of Nanofluid Coolant and Thorium-added Fuel on Burnup Dependent Isotopic Compositions in VVER-1000 Reactor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2024;24(4):986-992. doi:10.35414/akufemubid.1403049
Chicago Genç, Yasin, Sinem Uzun, and Adem Acır. “The Effect of Nanofluid Coolant and Thorium-Added Fuel on Burnup Dependent Isotopic Compositions in VVER-1000 Reactor”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 4 (August 2024): 986-92. https://doi.org/10.35414/akufemubid.1403049.
EndNote Genç Y, Uzun S, Acır A (August 1, 2024) The Effect of Nanofluid Coolant and Thorium-added Fuel on Burnup Dependent Isotopic Compositions in VVER-1000 Reactor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 4 986–992.
IEEE Y. Genç, S. Uzun, and A. Acır, “The Effect of Nanofluid Coolant and Thorium-added Fuel on Burnup Dependent Isotopic Compositions in VVER-1000 Reactor”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 4, pp. 986–992, 2024, doi: 10.35414/akufemubid.1403049.
ISNAD Genç, Yasin et al. “The Effect of Nanofluid Coolant and Thorium-Added Fuel on Burnup Dependent Isotopic Compositions in VVER-1000 Reactor”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/4 (August 2024), 986-992. https://doi.org/10.35414/akufemubid.1403049.
JAMA Genç Y, Uzun S, Acır A. The Effect of Nanofluid Coolant and Thorium-added Fuel on Burnup Dependent Isotopic Compositions in VVER-1000 Reactor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:986–992.
MLA Genç, Yasin et al. “The Effect of Nanofluid Coolant and Thorium-Added Fuel on Burnup Dependent Isotopic Compositions in VVER-1000 Reactor”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 4, 2024, pp. 986-92, doi:10.35414/akufemubid.1403049.
Vancouver Genç Y, Uzun S, Acır A. The Effect of Nanofluid Coolant and Thorium-added Fuel on Burnup Dependent Isotopic Compositions in VVER-1000 Reactor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(4):986-92.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.