Research Article
BibTex RIS Cite

Numerical Analysis of Highly Sensitive D-Shaped PCF SPR Temperature Sensor

Year 2024, , 782 - 788, 20.08.2024
https://doi.org/10.35414/akufemubid.1407387

Abstract

This numerical study presents an investigation of an optical fiber D-shaped PCF SPR sensor for temperature sensing, via the finite element method-based COMSOL Multiphysics simulation software. In the proposed PCF configuration, the sensor consists of two different-sized air holes and a gold layer. Between 10°C and 60°C, pure ethanol and an ethanol-chloroform mixture are selected to be used as analytes and their temperature sensitivities are compared. The effect of sensor parameters on sensor sensitivity is studied, and the optimum value is set for each parameter. The maximum sensitivity is calculated as 2008 pm/℃ for the pure ethanol, while it has reached 7750 pm/℃ for the ethanol-chloroform mixture, showing that chloroform improves the performance. The sensor proposed in this study has a higher temperature sensitivity compared to other studies and therefore has significant potential for applications requiring precise measurement

Project Number

2022-GENL-Eng-0001

References

  • Abbas, H. K., & Mahdi, Z. F. J. R. i. O. (2023). Fabricate a highly sensitive surface plasmon resonance optical fiber sensor based on a D-shape fiber coated with gold (Au) nano-layer. 12, 100497. https://doi.org/10.1016/j.rio.2023.100497
  • Abdelghaffar, M., Gamal, Y., El-Khoribi, R. A., Soliman, W., Badr, Y., Hameed, M. F. O., & Obayya, S. (2023). Highly sensitive V-shaped SPR PCF biosensor for cancer detection. Optical Quantum Electronics, 55(5), 472. https://doi.org/10.1007/s11082-023-04740-w
  • Abdullah, H., Islam, M. R., Ahmed, K., Malka, D., Nguyen, T. K., Hossain, M. N., . . . Dhasarathan, V. (2020). Theoretical analysis of highly temperature-sensitive fem based optical sensor in the infrared range. Optik, 205, 164060. https://doi.org/10.1016/j.ijleo.2019.164060
  • Amouzad Mahdiraji, G., Chow, D. M., Sandoghchi, S., Amirkhan, F., Dermosesian, E., Yeo, K. S., . . . Optics, I. (2014). Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. 33(1-2), 85-104. https://doi.org/10.1080/01468030.2013.879680
  • An, G., Li, S., Wang, H., & Zhang, X. (2017). Metal oxide-graphene-based quasi-D-shaped optical fiber plasmonic biosensor. IEEE Photonics Journal, 9(4), 1-9. https://doi.org/10.1109/JPHOT.2017.2722543
  • Chao, C.-T. C., Chen, S.-H., Huang, H. J., Kooh, M. R. R., Lim, C. M., Thotagamuge, R., . . . Chau, Y.-F. C. (2023). Improving Temperature-Sensing Performance of Photonic Crystal Fiber via External Metal-Coated Trapezoidal-Shaped Surface. Crystals, 13(5), 813. https://doi.org/10.3390/cryst13050813
  • Chaudhary, V. S., Kumar, D., Pandey, B. P., & Kumar, S. (2022). Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters-a review. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2022.3222969
  • Chen, Y., Xie, Q., Li, X., Zhou, H., Hong, X., & Geng, Y. (2016). Experimental realization of D-shaped photonic crystal fiber SPR sensor. Journal of Physics D: Applied Physics, 50(2), 025101. https://doi.org/10.1088/1361-6463/50/2/025101
  • Dogan, Y., & Erdogan, I. (2023). Highly sensitive MoS2/graphene based D-shaped optical fiber SPR refractive index sensor with Ag/Au grated structure. Optical Quantum Electronics, 55(12), 1-12. https://doi.org/10.1007/s11082-023-05315-5
  • Dogan, Y., Katirci, R., Erdogan, İ., & Yartasi, E. (2023). Artificial neural network based optimization for Ag grated D-shaped optical fiber surface plasmon resonance refractive index sensor. Optics Communications, 534, 129332. https://doi.org/10.1016/j.optcom.2023.129332
  • Erdogan, İ., & Dogan, Y. (2023). Au-TiO2-Graphene Grated Highly Sensitive D-Shaped SPR Refractive Index Sensor. Plasmonics, 1-8. https://doi.org/10.1007/s11468-023-01847-4
  • Gangwar, R. K., & Singh, V. K. (2017). Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics, 12, 1367-1372. https://doi.org/10.1007/s11468-016-0395-y
  • Gao, S., Wei, K., Yang, H., Tang, Y., Yi, Z., Tang, C., . . . Wu, P. (2023). Design of surface plasmon resonance-based D-type double open-loop channels PCF for temperature sensing. Sensors, 23(17), 7569. https://doi.org/10.3390/s23177569
  • Gu, S., Sun, W., Li, M., Li, Z., Nan, X., Feng, Z., & Deng, M. (2022). Simultaneous measurement of magnetic field and temperature based on photonic crystal fiber plasmonic sensor with dual-polarized modes. Optik, 259, 169030. https://doi.org/10.1016/j.ijleo.2022.169030
  • Haque, E., Hossain, M. A., Ahmed, F., & Namihira, Y. (2018). Surface plasmon resonance sensor based on modified $ D $-shaped photonic crystal fiber for wider range of refractive index detection. EEE Sensors Journal, 18(20), 8287-8293. https://doi.org/10.1109/JSEN.2018.2865514
  • Kumar, V., Raghuwanshi, S. K., & Kumar, S. (2022). Recent advances in carbon nanomaterials based spr sensor for biomolecules and gas detection-A review. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2022.3191042
  • Liu, W., Shi, Y., Yi, Z., Liu, C., Wang, F., Li, X., . . . Chu, P. K. (2021). Surface plasmon resonance chemical sensor composed of a microstructured optical fiber for the detection of an ultra-wide refractive index range and gas-liquid pollutants. Optics Express, 29(25), 40734-40747. https://doi.org/10.1364/OE.444323
  • Liu, Y., & Peng, W. (2020). Fiber-optic surface plasmon resonance sensors and biochemical applications: a review. Journal of Lightwave Technology, 39(12), 3781-3791. https://doi.org/10.1109/JLT.2020.3045068
  • Mo, X., Lv, J., Liu, Q., Jiang, X., & Si, G. (2021). A magnetic field SPR sensor based on temperature self-reference. Sensors, 21(18), 6130. https://doi.org/10.3390/s21186130
  • Moznuzzaman, M., Islam, M. R., Hossain, M. B., & Mehedi, I. M. (2020). Modeling of highly improved SPR sensor for formalin detection. Results in Physics, 16, 102874. https://doi.org/10.1016/j.rinp.2019.102874
  • Nayak, J. K., & Jha, R. (2017). Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing. Applied Optics, 56(12), 3510-3517. https://doi.org/10.1364/AO.56.003510
  • Pandey, P. S., Raghuwanshi, S. K., Singh, R., & Kumar, S. (2023). Surface plasmon resonance biosensor chip for human blood groups identification assisted with silver-chromium-hafnium oxide. Magnetochemistry, 9(1), 21. https://doi.org/10.3390/magnetochemistry9010021
  • Ramola, A., Marwaha, A., & Singh, S. (2021). Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Applied Physics A, 127(9), 643. https://doi.org/10.1007/s00339-021-04785-2
  • Sharma, A. K., & Gupta, B. (2007). Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor. Optics Communications, 274(2), 320-326. https://doi.org/10.1016/j.optcom.2007.02.030
  • Wang, D., Li, W., Zhang, Q., Liang, B., Peng, Z., Xu, J., . . . Li, J. (2021). High-performance tapered fiber surface plasmon resonance sensor based on the graphene/Ag/TiO2 layer. Plasmonics, 16(6), 2291-2303. https://doi.org/10.1007/s11468-021-01483-w
  • Wang, Q., Zhang, X., Yan, X., Wang, F., & Cheng, T. (2021). Design of a surface plasmon resonance temperature sensor with multi-wavebands based on conjoined-tubular anti-resonance fiber. Photonics, https://doi.org/10.3390/photonics8060231
  • Wang, Z., Zhang, W., Liu, X., Li, M., Lang, X., Singh, R., . . . Kumar, S. (2022). Novel optical fiber-based structures for plasmonics sensors. Biosensors, 12(11), 1016. https://doi.org/10.3390/bios12111016
  • Xie, T., He, Y., Yang, Y., Zhang, H., & Xu, Y. (2021). Highly sensitive surface plasmon resonance sensor based on graphene-coated U-shaped fiber. Plasmonics, 16, 205-213. https://doi.org/10.1007/s11468-020-01264-x
  • Xu, Y., Chen, X., & Zhu, Y. (2008). High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials. Sensors, 8(3), 1872-1878. https://doi.org/10.3390/s8031872
  • Yadav, M. K., Kumar, P., & Verma, R. (2020). Detection of adulteration in pure honey utilizing Ag-graphene oxide coated fiber optic SPR probes. Food chemistry, 332, 127346. https://doi.org/10.1016/j.foodchem.2020.127346
  • Yang, K.-Y., Chau, Y.-F., Huang, Y.-W., Yeh, H.-Y., & Ping Tsai, D. (2011). Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding. Journal of Applied Physics, 109(9). https://doi.org/10.1063/1.3583560
  • Zhang, Y., Chen, H., Wang, M., Liu, Y., Fan, X., Chen, Q., & Wu, B. (2021). Simultaneous measurement of refractive index and temperature of seawater based on surface plasmon resonance in a dual D-type photonic crystal fiber. Materials Research Express, 8(8), 085201. https://doi.org/10.1088/2053-1591/ac1ae7
  • Zhao, Y., Wu, Q.-l., & Zhang, Y.-n. (2019). Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement, 148, 106792. https://doi.org/10.1016/j.measurement.2019.07.020
  • Zhou, J., Qi, Q., Wang, C., Qian, Y., Liu, G., Wang, Y., & Fu, L. (2019). Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosensors Bioelectronics, 142, 111449. https://doi.org/10.1016/j.bios.2019.111449
  • Zhou, W., Mandia, D. J., Griffiths, M. B., Barry, S. T., & Albert, J. J. T. J. o. P. C. C. (2014). Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths. 118(1), 670-678. https://doi.org/10.1021/jp410937f

Yüksek hassasiyetli D Şekilli PCF SPR Sıcaklık Sensörünün Sayısal Analizi

Year 2024, , 782 - 788, 20.08.2024
https://doi.org/10.35414/akufemubid.1407387

Abstract

Bu sayısal çalışma, sonlu elemanlar yöntemi tabanlı COMSOL Multiphysics simülasyon yazılımıyla sıcaklık algılama için optik fiber D-şekilli PCF SPR sensörünün bir incelemesini sunmaktadır. Önerilen PCF konfigürasyonunda sensör, iki farklı boyutta hava boşlukları ve bir altın katmandan oluşmaktadır. 10°C ile 60°C arasında, analit olarak kullanılmak üzere saf etanol ve etanol-kloroform karışımı seçilmiş ve sıcaklık duyarlılıkları karşılaştırılmıştır. Sensör parametrelerinin sensör hassasiyeti üzerindeki etkisi incelenmiş ve her parametre için optimum değer belirlenmiştir. Maksimum hassasiyet saf etanol için 2008 pm/℃ olarak hesaplanırken, etanol-kloroform karışımı için 7750 pm/℃ değerine ulaşmıştır, bu da kloroformun performansı artırdığını göstermektedir. Bu çalışmada önerilen sensör, diğer çalışmalara kıyasen daha yüksek sıcaklık hassasiyetine sahip olduğundan hassas ölçüm gerektiren uygulamalar için önemli bir potansiyele sahiptir.

Supporting Institution

Sivas Bilim ve Teknoloji Üniversitesi

Project Number

2022-GENL-Eng-0001

References

  • Abbas, H. K., & Mahdi, Z. F. J. R. i. O. (2023). Fabricate a highly sensitive surface plasmon resonance optical fiber sensor based on a D-shape fiber coated with gold (Au) nano-layer. 12, 100497. https://doi.org/10.1016/j.rio.2023.100497
  • Abdelghaffar, M., Gamal, Y., El-Khoribi, R. A., Soliman, W., Badr, Y., Hameed, M. F. O., & Obayya, S. (2023). Highly sensitive V-shaped SPR PCF biosensor for cancer detection. Optical Quantum Electronics, 55(5), 472. https://doi.org/10.1007/s11082-023-04740-w
  • Abdullah, H., Islam, M. R., Ahmed, K., Malka, D., Nguyen, T. K., Hossain, M. N., . . . Dhasarathan, V. (2020). Theoretical analysis of highly temperature-sensitive fem based optical sensor in the infrared range. Optik, 205, 164060. https://doi.org/10.1016/j.ijleo.2019.164060
  • Amouzad Mahdiraji, G., Chow, D. M., Sandoghchi, S., Amirkhan, F., Dermosesian, E., Yeo, K. S., . . . Optics, I. (2014). Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. 33(1-2), 85-104. https://doi.org/10.1080/01468030.2013.879680
  • An, G., Li, S., Wang, H., & Zhang, X. (2017). Metal oxide-graphene-based quasi-D-shaped optical fiber plasmonic biosensor. IEEE Photonics Journal, 9(4), 1-9. https://doi.org/10.1109/JPHOT.2017.2722543
  • Chao, C.-T. C., Chen, S.-H., Huang, H. J., Kooh, M. R. R., Lim, C. M., Thotagamuge, R., . . . Chau, Y.-F. C. (2023). Improving Temperature-Sensing Performance of Photonic Crystal Fiber via External Metal-Coated Trapezoidal-Shaped Surface. Crystals, 13(5), 813. https://doi.org/10.3390/cryst13050813
  • Chaudhary, V. S., Kumar, D., Pandey, B. P., & Kumar, S. (2022). Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters-a review. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2022.3222969
  • Chen, Y., Xie, Q., Li, X., Zhou, H., Hong, X., & Geng, Y. (2016). Experimental realization of D-shaped photonic crystal fiber SPR sensor. Journal of Physics D: Applied Physics, 50(2), 025101. https://doi.org/10.1088/1361-6463/50/2/025101
  • Dogan, Y., & Erdogan, I. (2023). Highly sensitive MoS2/graphene based D-shaped optical fiber SPR refractive index sensor with Ag/Au grated structure. Optical Quantum Electronics, 55(12), 1-12. https://doi.org/10.1007/s11082-023-05315-5
  • Dogan, Y., Katirci, R., Erdogan, İ., & Yartasi, E. (2023). Artificial neural network based optimization for Ag grated D-shaped optical fiber surface plasmon resonance refractive index sensor. Optics Communications, 534, 129332. https://doi.org/10.1016/j.optcom.2023.129332
  • Erdogan, İ., & Dogan, Y. (2023). Au-TiO2-Graphene Grated Highly Sensitive D-Shaped SPR Refractive Index Sensor. Plasmonics, 1-8. https://doi.org/10.1007/s11468-023-01847-4
  • Gangwar, R. K., & Singh, V. K. (2017). Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics, 12, 1367-1372. https://doi.org/10.1007/s11468-016-0395-y
  • Gao, S., Wei, K., Yang, H., Tang, Y., Yi, Z., Tang, C., . . . Wu, P. (2023). Design of surface plasmon resonance-based D-type double open-loop channels PCF for temperature sensing. Sensors, 23(17), 7569. https://doi.org/10.3390/s23177569
  • Gu, S., Sun, W., Li, M., Li, Z., Nan, X., Feng, Z., & Deng, M. (2022). Simultaneous measurement of magnetic field and temperature based on photonic crystal fiber plasmonic sensor with dual-polarized modes. Optik, 259, 169030. https://doi.org/10.1016/j.ijleo.2022.169030
  • Haque, E., Hossain, M. A., Ahmed, F., & Namihira, Y. (2018). Surface plasmon resonance sensor based on modified $ D $-shaped photonic crystal fiber for wider range of refractive index detection. EEE Sensors Journal, 18(20), 8287-8293. https://doi.org/10.1109/JSEN.2018.2865514
  • Kumar, V., Raghuwanshi, S. K., & Kumar, S. (2022). Recent advances in carbon nanomaterials based spr sensor for biomolecules and gas detection-A review. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2022.3191042
  • Liu, W., Shi, Y., Yi, Z., Liu, C., Wang, F., Li, X., . . . Chu, P. K. (2021). Surface plasmon resonance chemical sensor composed of a microstructured optical fiber for the detection of an ultra-wide refractive index range and gas-liquid pollutants. Optics Express, 29(25), 40734-40747. https://doi.org/10.1364/OE.444323
  • Liu, Y., & Peng, W. (2020). Fiber-optic surface plasmon resonance sensors and biochemical applications: a review. Journal of Lightwave Technology, 39(12), 3781-3791. https://doi.org/10.1109/JLT.2020.3045068
  • Mo, X., Lv, J., Liu, Q., Jiang, X., & Si, G. (2021). A magnetic field SPR sensor based on temperature self-reference. Sensors, 21(18), 6130. https://doi.org/10.3390/s21186130
  • Moznuzzaman, M., Islam, M. R., Hossain, M. B., & Mehedi, I. M. (2020). Modeling of highly improved SPR sensor for formalin detection. Results in Physics, 16, 102874. https://doi.org/10.1016/j.rinp.2019.102874
  • Nayak, J. K., & Jha, R. (2017). Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing. Applied Optics, 56(12), 3510-3517. https://doi.org/10.1364/AO.56.003510
  • Pandey, P. S., Raghuwanshi, S. K., Singh, R., & Kumar, S. (2023). Surface plasmon resonance biosensor chip for human blood groups identification assisted with silver-chromium-hafnium oxide. Magnetochemistry, 9(1), 21. https://doi.org/10.3390/magnetochemistry9010021
  • Ramola, A., Marwaha, A., & Singh, S. (2021). Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Applied Physics A, 127(9), 643. https://doi.org/10.1007/s00339-021-04785-2
  • Sharma, A. K., & Gupta, B. (2007). Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor. Optics Communications, 274(2), 320-326. https://doi.org/10.1016/j.optcom.2007.02.030
  • Wang, D., Li, W., Zhang, Q., Liang, B., Peng, Z., Xu, J., . . . Li, J. (2021). High-performance tapered fiber surface plasmon resonance sensor based on the graphene/Ag/TiO2 layer. Plasmonics, 16(6), 2291-2303. https://doi.org/10.1007/s11468-021-01483-w
  • Wang, Q., Zhang, X., Yan, X., Wang, F., & Cheng, T. (2021). Design of a surface plasmon resonance temperature sensor with multi-wavebands based on conjoined-tubular anti-resonance fiber. Photonics, https://doi.org/10.3390/photonics8060231
  • Wang, Z., Zhang, W., Liu, X., Li, M., Lang, X., Singh, R., . . . Kumar, S. (2022). Novel optical fiber-based structures for plasmonics sensors. Biosensors, 12(11), 1016. https://doi.org/10.3390/bios12111016
  • Xie, T., He, Y., Yang, Y., Zhang, H., & Xu, Y. (2021). Highly sensitive surface plasmon resonance sensor based on graphene-coated U-shaped fiber. Plasmonics, 16, 205-213. https://doi.org/10.1007/s11468-020-01264-x
  • Xu, Y., Chen, X., & Zhu, Y. (2008). High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials. Sensors, 8(3), 1872-1878. https://doi.org/10.3390/s8031872
  • Yadav, M. K., Kumar, P., & Verma, R. (2020). Detection of adulteration in pure honey utilizing Ag-graphene oxide coated fiber optic SPR probes. Food chemistry, 332, 127346. https://doi.org/10.1016/j.foodchem.2020.127346
  • Yang, K.-Y., Chau, Y.-F., Huang, Y.-W., Yeh, H.-Y., & Ping Tsai, D. (2011). Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding. Journal of Applied Physics, 109(9). https://doi.org/10.1063/1.3583560
  • Zhang, Y., Chen, H., Wang, M., Liu, Y., Fan, X., Chen, Q., & Wu, B. (2021). Simultaneous measurement of refractive index and temperature of seawater based on surface plasmon resonance in a dual D-type photonic crystal fiber. Materials Research Express, 8(8), 085201. https://doi.org/10.1088/2053-1591/ac1ae7
  • Zhao, Y., Wu, Q.-l., & Zhang, Y.-n. (2019). Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement, 148, 106792. https://doi.org/10.1016/j.measurement.2019.07.020
  • Zhou, J., Qi, Q., Wang, C., Qian, Y., Liu, G., Wang, Y., & Fu, L. (2019). Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosensors Bioelectronics, 142, 111449. https://doi.org/10.1016/j.bios.2019.111449
  • Zhou, W., Mandia, D. J., Griffiths, M. B., Barry, S. T., & Albert, J. J. T. J. o. P. C. C. (2014). Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths. 118(1), 670-678. https://doi.org/10.1021/jp410937f
There are 35 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications
Journal Section Articles
Authors

İlhan Erdoğan 0000-0002-2774-1349

Yusuf Doğan 0000-0002-3461-5404

Project Number 2022-GENL-Eng-0001
Early Pub Date July 23, 2024
Publication Date August 20, 2024
Submission Date December 20, 2023
Acceptance Date June 13, 2024
Published in Issue Year 2024

Cite

APA Erdoğan, İ., & Doğan, Y. (2024). Numerical Analysis of Highly Sensitive D-Shaped PCF SPR Temperature Sensor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(4), 782-788. https://doi.org/10.35414/akufemubid.1407387
AMA Erdoğan İ, Doğan Y. Numerical Analysis of Highly Sensitive D-Shaped PCF SPR Temperature Sensor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2024;24(4):782-788. doi:10.35414/akufemubid.1407387
Chicago Erdoğan, İlhan, and Yusuf Doğan. “Numerical Analysis of Highly Sensitive D-Shaped PCF SPR Temperature Sensor”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 4 (August 2024): 782-88. https://doi.org/10.35414/akufemubid.1407387.
EndNote Erdoğan İ, Doğan Y (August 1, 2024) Numerical Analysis of Highly Sensitive D-Shaped PCF SPR Temperature Sensor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 4 782–788.
IEEE İ. Erdoğan and Y. Doğan, “Numerical Analysis of Highly Sensitive D-Shaped PCF SPR Temperature Sensor”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 4, pp. 782–788, 2024, doi: 10.35414/akufemubid.1407387.
ISNAD Erdoğan, İlhan - Doğan, Yusuf. “Numerical Analysis of Highly Sensitive D-Shaped PCF SPR Temperature Sensor”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/4 (August 2024), 782-788. https://doi.org/10.35414/akufemubid.1407387.
JAMA Erdoğan İ, Doğan Y. Numerical Analysis of Highly Sensitive D-Shaped PCF SPR Temperature Sensor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:782–788.
MLA Erdoğan, İlhan and Yusuf Doğan. “Numerical Analysis of Highly Sensitive D-Shaped PCF SPR Temperature Sensor”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 4, 2024, pp. 782-8, doi:10.35414/akufemubid.1407387.
Vancouver Erdoğan İ, Doğan Y. Numerical Analysis of Highly Sensitive D-Shaped PCF SPR Temperature Sensor. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(4):782-8.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.