Research Article
BibTex RIS Cite

Improving the Call Performance of Secondary Users by Utilizing a Buffer-Based Channel Allocation Approach in Cognitive Radio Networks

Year 2024, , 1346 - 1354, 02.12.2024
https://doi.org/10.35414/akufemubid.1433084

Abstract

In this presented work, a Cognitive Radio (CR) network model where Primary Users (PUs) and Secondary Users (SUs) coexist within the same communication area and SUs utilize the licensed spectrum opportunistically was developed, analyzed, and its performance was comparatively evaluated with a peer network model. In the proposed CR network model, the buffer usage is envisaged for SUs whose calls are blocked due to limited spectrum and for SUs whose connections drop due to incoming PU calls. The performance of the proposed CR network model was analyzed using a three-dimensional continuous-time Markov chain. Additionally, a Monte Carlo simulation was developed for the CR network model, and the results obtained from the simulation model were validated by the results obtained from the analytical model. In the proposed model, SU call blocking probability, SU call dropping probability, and SU spectrum handover probability were considered as performance metrics. The results obtained from the proposed model were compared with those obtained from a peer model not utilizing buffers, presented in the literature. According to the obtained results, when the SU arrival rate is 2, there is approximately a 55% improvement in SU call blocking probability, a 61% improvement in SU call dropping probability, and approximately a 50% improvement in SU spectrum handover probability.

References

  • Bayrakdar, M. E., and Çalhan, A., 2015. Bilişsel radyo ağlarında spektrum el değiştirme. Sakarya University Journal of Science, 19(3), 291-302. https://doi.org/10.16984/saufenbilder.81445
  • Goel, S., Kulshrestha, R., 2022. Queueing based spectrum management in cognitive radio networks with retrial and heterogeneous service classes. Journal of Ambient Intelligence and Humanized Computing, 13, 2429–2437. https://doi.org/10.1007/s12652-021-03442-z
  • Hassani, M. M., and Berangi, R., 2019. Impact of the primary user on the secondary user blocking probability in cognitive radio sensor networks. Turkish Journal of Electrical Engineering and Computer Sciences, 27(3), 2081-2092. https://doi.org/10.3906/elk-1706-292
  • Haykin, S., 2005. Cognitive radio: brain‒empowered wireless communications. IEEE Journal of Selected Areas in Communications, 23(2), 201–220. https://doi.org/10.1109/JSAC.2004.839380
  • Kulkarni, K., and Adrish, B., 2017. On Optimal Spectrum Access of Cognitive Relay with Finite Packet Buffer. IEEE Transactions on Vehicular Technology, 66, 7584-7588.
  • Lee, Y., Park, G. C., Sim, D.B., 2012. Cognitive radio spectrum access with prioritized secondary users, Applied Mathematics & Information Sciences, 6(2), 595–601.
  • Mitola, J., and Maguire, G. Q., 1999. Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18. https://doi.org/10.1109/98.788210
  • Qiming, T., Chuan, M., Guanding, Y., and Aiping, H., 2010. Analysis of cognitive radio spectrum access with finite primary users and infinite secondary users. International Conference on Wireless Communications & Signal Processing (WCSP), China, pp. 1-5. https://doi.org/10.1109/WCSP.2010.5633740
  • Qing, H., Shaoyi, X., and Xiaojun J., 2011. Performance evaluation of secondary users in Dynamic Spectrum Access system, 2011. IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, Canada, pp. 710-714. https://www.doi.org/10.1109/PIMRC.2011.6140057
  • Salameh, O., Bruneel, H., and Wittevrongel, S., 2020. Performance evaluation of cognitive radio networks with imperfect spectrum sensing and bursty primary user traffic. Mathematical Problems in Engineering, 64, 1-11. https://doi.org/10.1155/2020/4102046
  • Salameh, O., Turck, K. D., and Bruneel, H., 2017. Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff. Telecommunication Systems, 65, 539-550. https://doi.org/10.1007/s11235-016-0250-7
  • Shruti and Kulshrestha, R., 2022. Analysis of Spectrum Sensing and Spectrum Access in Cognitive Radio Networks with Heterogeneous Traffic and p-Retry Buffering, in IEEE Transactions on Mobile Computing. 21(7), pp. 2318-2331. https://www.doi.org/10.1109/TMC.2020.3042836
  • Tang, W., Yu, H., Han, Y., and Li, S., 2012. An analytical performance model considering access strategy of opportunistic spectrum sharing system. Concurrency and Computation: Practice and Experience, 24(11), 1200-1212. https://doi.org/10.1002/cpe.1890
  • Telex, M. N. N., Shou. Dong and Atta S. Attahiru, Analysis of cognitive radio networks with channel assembling, buffering, and imperfect sensing, 2013. IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, pp. 952-957. https://www.doi.org/10.1109/WCNC.2013.6554692
  • Toukhey, A.T.E, Mohsen M. T., and Ibrahim F. T, 2016. QoS-Driven Channel Allocation Schemes Based on Secondary Users' Priority in Cognitive Radio Networks. International Journal of Wireless and Mobile Computing 11(2), 91-99.
  • Wang, Z., and Zhang, Y., Analysis of cognitive radio spectrum access with heterogeneous traffic under buffer constraints, 2013. 3rd International Conference on Consumer Electronics, Communications and Networks, Xianning, China, pp. 137-140. https://www.doi.org/10.1109/CECNet.2013.6703291
  • Zhao, Q., and Sadler, B. M., 2007. A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79-89. https://doi.org/10.1109/MSP.2007.361604

Bilişsel Radyo Ağlarında Arabellek Tabanlı Kanal Tahsis Yaklaşımı ile İkincil Kullanıcıların Çağrı Başarımlarının İyileştirilmesi

Year 2024, , 1346 - 1354, 02.12.2024
https://doi.org/10.35414/akufemubid.1433084

Abstract

Bu makalede sunulan çalışmada, Birincil Kullanıcıların (BK) ve İkincil Kullanıcıların (İK) aynı iletişim alanı içerisinde birlikte bulunduğu ve İK’ların lisanslı spektrumu fırsatçı bir yaklaşımla kullandığı bir Bilişsel Radyo (BR) ağ modeli geliştirilmiş, analiz edilmiş ve başarımı eş bir ağ modeli ile karşılaştırmalı değerlendirilmiştir. Önerilen ağ modelinde spektrum yetersizliğinden çağrıları engellenen İK’lar ve yeni gelen BK çağrılarından dolayı bağlantısı düşen İK’lar için arabellek kullanımı öngörülmüştür. Önerilen BR ağ modelinin başarımı üç boyutlu sürekli Markov zinciri kullanılarak analiz edilmiştir. Ayrıca, geliştirilen BR ağ modelinin Monte-Carlo benzetimi de gerçekleştirilerek elde edilen sonuçlarla, analitik modelden elde edilen sonuçlar doğrulanmıştır. Önerilen modelde İK çağrı engelleme olasılığı, İK çağrı düşme olasılığı ve İK spektrum el-değiştirme olasılığı başarım metrikleri olarak benimsenmiştir. Karşılaştırmalı başarım sonuçlara göre, İK varış hızı 2 olduğunda, İK çağrı engelleme olasılığında %55, İK çağrı düşme olasılığında %61 ve İK spektrum el-değiştirme olasılığında yaklaşık %50 oranında iyileştirme elde edilmiştir.

References

  • Bayrakdar, M. E., and Çalhan, A., 2015. Bilişsel radyo ağlarında spektrum el değiştirme. Sakarya University Journal of Science, 19(3), 291-302. https://doi.org/10.16984/saufenbilder.81445
  • Goel, S., Kulshrestha, R., 2022. Queueing based spectrum management in cognitive radio networks with retrial and heterogeneous service classes. Journal of Ambient Intelligence and Humanized Computing, 13, 2429–2437. https://doi.org/10.1007/s12652-021-03442-z
  • Hassani, M. M., and Berangi, R., 2019. Impact of the primary user on the secondary user blocking probability in cognitive radio sensor networks. Turkish Journal of Electrical Engineering and Computer Sciences, 27(3), 2081-2092. https://doi.org/10.3906/elk-1706-292
  • Haykin, S., 2005. Cognitive radio: brain‒empowered wireless communications. IEEE Journal of Selected Areas in Communications, 23(2), 201–220. https://doi.org/10.1109/JSAC.2004.839380
  • Kulkarni, K., and Adrish, B., 2017. On Optimal Spectrum Access of Cognitive Relay with Finite Packet Buffer. IEEE Transactions on Vehicular Technology, 66, 7584-7588.
  • Lee, Y., Park, G. C., Sim, D.B., 2012. Cognitive radio spectrum access with prioritized secondary users, Applied Mathematics & Information Sciences, 6(2), 595–601.
  • Mitola, J., and Maguire, G. Q., 1999. Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18. https://doi.org/10.1109/98.788210
  • Qiming, T., Chuan, M., Guanding, Y., and Aiping, H., 2010. Analysis of cognitive radio spectrum access with finite primary users and infinite secondary users. International Conference on Wireless Communications & Signal Processing (WCSP), China, pp. 1-5. https://doi.org/10.1109/WCSP.2010.5633740
  • Qing, H., Shaoyi, X., and Xiaojun J., 2011. Performance evaluation of secondary users in Dynamic Spectrum Access system, 2011. IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, Canada, pp. 710-714. https://www.doi.org/10.1109/PIMRC.2011.6140057
  • Salameh, O., Bruneel, H., and Wittevrongel, S., 2020. Performance evaluation of cognitive radio networks with imperfect spectrum sensing and bursty primary user traffic. Mathematical Problems in Engineering, 64, 1-11. https://doi.org/10.1155/2020/4102046
  • Salameh, O., Turck, K. D., and Bruneel, H., 2017. Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff. Telecommunication Systems, 65, 539-550. https://doi.org/10.1007/s11235-016-0250-7
  • Shruti and Kulshrestha, R., 2022. Analysis of Spectrum Sensing and Spectrum Access in Cognitive Radio Networks with Heterogeneous Traffic and p-Retry Buffering, in IEEE Transactions on Mobile Computing. 21(7), pp. 2318-2331. https://www.doi.org/10.1109/TMC.2020.3042836
  • Tang, W., Yu, H., Han, Y., and Li, S., 2012. An analytical performance model considering access strategy of opportunistic spectrum sharing system. Concurrency and Computation: Practice and Experience, 24(11), 1200-1212. https://doi.org/10.1002/cpe.1890
  • Telex, M. N. N., Shou. Dong and Atta S. Attahiru, Analysis of cognitive radio networks with channel assembling, buffering, and imperfect sensing, 2013. IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, pp. 952-957. https://www.doi.org/10.1109/WCNC.2013.6554692
  • Toukhey, A.T.E, Mohsen M. T., and Ibrahim F. T, 2016. QoS-Driven Channel Allocation Schemes Based on Secondary Users' Priority in Cognitive Radio Networks. International Journal of Wireless and Mobile Computing 11(2), 91-99.
  • Wang, Z., and Zhang, Y., Analysis of cognitive radio spectrum access with heterogeneous traffic under buffer constraints, 2013. 3rd International Conference on Consumer Electronics, Communications and Networks, Xianning, China, pp. 137-140. https://www.doi.org/10.1109/CECNet.2013.6703291
  • Zhao, Q., and Sadler, B. M., 2007. A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79-89. https://doi.org/10.1109/MSP.2007.361604
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Sedat Atmaca 0000-0003-0229-4893

Early Pub Date November 11, 2024
Publication Date December 2, 2024
Submission Date February 7, 2024
Acceptance Date August 1, 2024
Published in Issue Year 2024

Cite

APA Atmaca, S. (2024). Bilişsel Radyo Ağlarında Arabellek Tabanlı Kanal Tahsis Yaklaşımı ile İkincil Kullanıcıların Çağrı Başarımlarının İyileştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(6), 1346-1354. https://doi.org/10.35414/akufemubid.1433084
AMA Atmaca S. Bilişsel Radyo Ağlarında Arabellek Tabanlı Kanal Tahsis Yaklaşımı ile İkincil Kullanıcıların Çağrı Başarımlarının İyileştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2024;24(6):1346-1354. doi:10.35414/akufemubid.1433084
Chicago Atmaca, Sedat. “Bilişsel Radyo Ağlarında Arabellek Tabanlı Kanal Tahsis Yaklaşımı Ile İkincil Kullanıcıların Çağrı Başarımlarının İyileştirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 6 (December 2024): 1346-54. https://doi.org/10.35414/akufemubid.1433084.
EndNote Atmaca S (December 1, 2024) Bilişsel Radyo Ağlarında Arabellek Tabanlı Kanal Tahsis Yaklaşımı ile İkincil Kullanıcıların Çağrı Başarımlarının İyileştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 6 1346–1354.
IEEE S. Atmaca, “Bilişsel Radyo Ağlarında Arabellek Tabanlı Kanal Tahsis Yaklaşımı ile İkincil Kullanıcıların Çağrı Başarımlarının İyileştirilmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 6, pp. 1346–1354, 2024, doi: 10.35414/akufemubid.1433084.
ISNAD Atmaca, Sedat. “Bilişsel Radyo Ağlarında Arabellek Tabanlı Kanal Tahsis Yaklaşımı Ile İkincil Kullanıcıların Çağrı Başarımlarının İyileştirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/6 (December 2024), 1346-1354. https://doi.org/10.35414/akufemubid.1433084.
JAMA Atmaca S. Bilişsel Radyo Ağlarında Arabellek Tabanlı Kanal Tahsis Yaklaşımı ile İkincil Kullanıcıların Çağrı Başarımlarının İyileştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1346–1354.
MLA Atmaca, Sedat. “Bilişsel Radyo Ağlarında Arabellek Tabanlı Kanal Tahsis Yaklaşımı Ile İkincil Kullanıcıların Çağrı Başarımlarının İyileştirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 6, 2024, pp. 1346-54, doi:10.35414/akufemubid.1433084.
Vancouver Atmaca S. Bilişsel Radyo Ağlarında Arabellek Tabanlı Kanal Tahsis Yaklaşımı ile İkincil Kullanıcıların Çağrı Başarımlarının İyileştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(6):1346-54.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.