Research Article
BibTex RIS Cite

Biyoklimatik Koşullara Dayalı Yerleşim Alanlarının Belirlenmesi Kahramanmaraş, Türkiye

Year 2024, , 1215 - 1224, 01.10.2024
https://doi.org/10.35414/akufemubid.1435627

Abstract

Biyoklimatik konfor insanlar için hem fizyolojik hem de psikolojik olarak kendilerini sağlıklı hissettikleri iklim koşullarıdır. Biyoklimatik konforun belirlenmesinde sıcaklık, bağıl nem ve rüzgâr hızı gibi kriterler kullanılmaktadır. Hem insan sağlığı hem de enerji tasarrufu için biyoklimatik alanlar şehir planlama çalışmalarında dikkat edilmelidir. Bu çalışmada Kahramanmaraş ili için biyoklimatik konfor alanlarının belirlenmesi amaçlanmıştır. 32 meteoroloji istasyonundan 57 yıllık iklim verileri kullanılmıştır. Bu veriler ArcGIS 10.8 coğrafi bilgi sistemleri (CBS) yazılımına aktarılmıştır. Discomfort Index (DI), Heat Index (HI) ve Wind Chill Index (WCI) kullanılarak biyoklimatik konfor aylık, mevsimlik ve yıllık olarak belirlenmiştir. Bu araştırma ile biyoklimatik koşulların en uygun olduğu zamanlarda sıcaklık 18-25°C, nispi nem %32-48 ve rüzgâr hızı ise 1.25-2.75 m/s olarak hesaplanmıştır. Biyoklimatik açıdan uygunluk durumuna göre on sınıf oluşturulmuştur. Biyoklimatik konforun neredeyse uygun olmadığı alanlar 426 km² ve %2.93, biyoklimatik konforun az uygun olduğu alanlar 9106 km² ve %62.69, biyoklimatik konforun orta uygun olduğu alanlar 4993 km² ve %34.38 oranındadır.

References

  • Adiguzel, F., Cetin, M., Kaya, E., Simsek, M., Gungor, S. and Bozdogan Sert, E., 2020. Defining suitable areas for bioclimatic comfort for landscape planning and landscape management in Hatay, Turkey. Theoretical and Applied Climatology, 139, 1493–1503. https://doi.org/10.1007/s00704-019-03065-7
  • Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H. and Tinz, B., 2012. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56, 515–535. https://doi.org/10.1007/s00484-011-0453-2
  • Çalışkan, O., Çiçek, İ. and Matzarakis, A., 2012. The climate and bioclimate of Bursa (Turkey) from the perspective of tourism. Theoretical and Applied Climatology, 107, 417–425. https://doi.org/10.1007/s00704-011-0489-6
  • Cetin, M., 2015. Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 187, 1–10. https://doi.org/10.1007/s10661-015-4861-3
  • Cetin, M., 2020. Climate comfort depending on different altitudes and land use in the urban areas in Kahramanmaras City. Air Quality, Atmosphere & Health, 13, 991-999. https://doi.org/10.1007/s11869-020-00858-y
  • Cetin, M., Adiguzel, F., Kaya, O. and Sahap, A., 2018. Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability, 20, 361–375. https://doi.org/10.1007/s10668-016-9885-5
  • Ekercin, S. and Örmeci, C., 2010. Evaluating climate change effects on water and salt resources in Salt Lake, Turkey using multitemporal SPOT imagery. Environmental Monitoring and Assessment, 163, 361–368. https://doi.org/10.1007/s10661-009-0840-x
  • Evrendilek, F. and Berberoglu, S., 2008. Quantifying spatial patterns of bioclimatic zones and controls in Turkey. Theoretical and Applied Climatology, 91, 35–50. https://doi.org/10.1007/s00704-006-0294-9
  • Fotso-Nguemo, T. C., Weber, T., Diedhiou, A., Chouto, S., Vondou, D. A., Rechid, D. and Jacob, D., 2023. Projected impact of increased global warming on heat stress and exposed population over Africa. Earth’s Future, 11. https://doi.org/10.1029/2022EF003268
  • Gungor, S., Cetin, M. and Adiguzel, F., 2021. Calculation of comfortable thermal conditions for Mersin urban city planning in Turkey. Air Quality, Atmosphere & Health, 14, 515–522. https://doi.org/10.1007/s11869-020-00955-y
  • Haldane, J. S., 1905. The influence of high air temperatures No. I. Epidemiology & Infection, 5, 494-513. https://doi.org/10.1017/S0022172400006811
  • Kargıoğlu, M., Şenkul, Ç., Serteser, A. and Konuk, M., 2009. Bioclimatic requirements of Quercus vulcanica Boiss et Heldr. Ex Kotschy an endemic species in Turkey. Polish Journal of Ecology, 57, 197–200.
  • Mansuroğlu, S., Dağ, V. and Kalaycı Önaç, A., 2021. Attitudes of people toward climate change regarding the bioclimatic comfort level in tourism cities; evidence from Antalya, Turkey. Environmental Monitoring and Assessment, 193, 1–16. https://doi.org/10.1007/s10661-021-09205-9
  • Mayer, H. and Höppe, P., 1987. Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, 38, 43–49. https://doi.org/10.1007/BF00866252
  • Meteorology, 2022. Kahramanmaraş city for 1970–2022 meteorological data. General Directorate of Meteorology.
  • Metin, A. E. and Çağlak, S., 2022. Assessment of the effect of land use change on bioclimatic comfort conditions in Uşak Province. Turkish Journal of Agriculture and Forestry, 46, 632–641. https://doi.org/10.55730/1300-011X.3032
  • Nouri, A. S., Rodriguez-Algecíras, J. and Matzarakis, A., 2023. Establishing initial urban bioclimatic planning recommendations for Ankara to address existing and future urban thermophysiological risk factors. Urban Climate, 49, 101456. https://doi.org/10.1016/j.uclim.2023.101456
  • Olgyay, V., 1963. Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton University Press, Princeton.
  • Oliveira, S. and Andrade, H., 2007. An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. International Journal of Biometeorology, 52, 69–84. https://doi.org/10.1007/s00484-007-0100-0
  • Orhan, O., Ekercin, S. and Dadaser Celik, F., 2014. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/142939
  • Osczevski, R. J., 1995. The basis of wind chill. Arctic, 48 372–382. https://doi.org/10.14430/arctic1262
  • Ozyavuz, M., Aytin, B. K. and Ertin, D. C., 2018, Analysis of Bioclimatic Comfort of Tekirdag (Turkey) Province with Geographical Information Systems. Journal of Environmental Protection and Ecology, 19, 407–416.
  • Roshan, G., Almomenin, H. S., da Silveira Hirashima, S. Q. and Attia, S., 2019. Estimate of outdoor thermal comfort zones for different climatic regions of Iran. Urban Climate, 27, 8–23. https://doi.org/10.1016/j.uclim.2018.10.005
  • Steadman, R. G., 1979. The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. Journal of Applied Meteorology and Climatology, 18, 861–873.
  • Thom, E. C., 1959. The discomfort index. Weatherwise, 12, 57–61. https://doi.org/10.1080/00431672.1959.9926960
  • Topay, M., 2007. The importance of climate for recreational planning of rural areas: case study of Muğla Province, Turkey. Developments in Tourism Climatology (Edited by: A. Matzarakis, CR de Freitas and D. Scott), 29, 36.
  • Toy, S., Çağlak, S. and Esringü, A. 2022. Assessment of bioclimatic sensitive spatial planning in a Turkish city, Eskisehir. Atmósfera, 35, 719–735. https://doi.org/10.20937/ATM.52963
  • Toy, S., Yilmaz, S. and Yilmaz, H., 2007. Determination of bioclimatic comfort in three different land uses in the city of Erzurum, Turkey. Building and Environment, 42, 1315–1318. https://doi.org/10.1016/j.buildenv.2005.10.031
  • https://kahramanmaras.bel.tr, (08.09.2023)

Determining Residential Areas Based on Bioclimatic Conditions in Kahramanmaraş, Türkiye

Year 2024, , 1215 - 1224, 01.10.2024
https://doi.org/10.35414/akufemubid.1435627

Abstract

Bioclimatic comfort refers to the climatic conditions that contribute to individuals’ physiological and psychological well-being. Criteria such as temperature, relative humidity and wind speed are pivotal in determining bioclimatic comfort. Bioclimatic areas should be taken into consideration in urban planning studies for both human well-being and energy saving. This study endeavors to identify bioclimatic comfort areas tailored for Kahramanmaraş. 57 years of climate data obtained from 32 meteorological stations were used. These data were imported into ArcGIS 10.8 geographic information systems (GIS) software. Bioclimatic comfort levels were analyzed on a monthly, seasonal, and annual basis, employing the Discomfort Index (DI), Heat Index (HI), and Wind Chill Index (WCI). The findings revealed that the optimal bioclimatic conditions fell within specific ranges: a temperature range of 18-25°C, relative humidity between 32-48%, and a wind speed of 1.25 – 2.75 m/s. Ten classes were generated based on bioclimatic suitability. The areas characterized by almost unsuitable bioclimatic comfort cover are 426 km² and 2.93%, less suitable areas encompass 9106 km² and 62.69%, and moderately suitable bioclimatic comfort areas span 4993 km² and 34.38%.

References

  • Adiguzel, F., Cetin, M., Kaya, E., Simsek, M., Gungor, S. and Bozdogan Sert, E., 2020. Defining suitable areas for bioclimatic comfort for landscape planning and landscape management in Hatay, Turkey. Theoretical and Applied Climatology, 139, 1493–1503. https://doi.org/10.1007/s00704-019-03065-7
  • Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H. and Tinz, B., 2012. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56, 515–535. https://doi.org/10.1007/s00484-011-0453-2
  • Çalışkan, O., Çiçek, İ. and Matzarakis, A., 2012. The climate and bioclimate of Bursa (Turkey) from the perspective of tourism. Theoretical and Applied Climatology, 107, 417–425. https://doi.org/10.1007/s00704-011-0489-6
  • Cetin, M., 2015. Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 187, 1–10. https://doi.org/10.1007/s10661-015-4861-3
  • Cetin, M., 2020. Climate comfort depending on different altitudes and land use in the urban areas in Kahramanmaras City. Air Quality, Atmosphere & Health, 13, 991-999. https://doi.org/10.1007/s11869-020-00858-y
  • Cetin, M., Adiguzel, F., Kaya, O. and Sahap, A., 2018. Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability, 20, 361–375. https://doi.org/10.1007/s10668-016-9885-5
  • Ekercin, S. and Örmeci, C., 2010. Evaluating climate change effects on water and salt resources in Salt Lake, Turkey using multitemporal SPOT imagery. Environmental Monitoring and Assessment, 163, 361–368. https://doi.org/10.1007/s10661-009-0840-x
  • Evrendilek, F. and Berberoglu, S., 2008. Quantifying spatial patterns of bioclimatic zones and controls in Turkey. Theoretical and Applied Climatology, 91, 35–50. https://doi.org/10.1007/s00704-006-0294-9
  • Fotso-Nguemo, T. C., Weber, T., Diedhiou, A., Chouto, S., Vondou, D. A., Rechid, D. and Jacob, D., 2023. Projected impact of increased global warming on heat stress and exposed population over Africa. Earth’s Future, 11. https://doi.org/10.1029/2022EF003268
  • Gungor, S., Cetin, M. and Adiguzel, F., 2021. Calculation of comfortable thermal conditions for Mersin urban city planning in Turkey. Air Quality, Atmosphere & Health, 14, 515–522. https://doi.org/10.1007/s11869-020-00955-y
  • Haldane, J. S., 1905. The influence of high air temperatures No. I. Epidemiology & Infection, 5, 494-513. https://doi.org/10.1017/S0022172400006811
  • Kargıoğlu, M., Şenkul, Ç., Serteser, A. and Konuk, M., 2009. Bioclimatic requirements of Quercus vulcanica Boiss et Heldr. Ex Kotschy an endemic species in Turkey. Polish Journal of Ecology, 57, 197–200.
  • Mansuroğlu, S., Dağ, V. and Kalaycı Önaç, A., 2021. Attitudes of people toward climate change regarding the bioclimatic comfort level in tourism cities; evidence from Antalya, Turkey. Environmental Monitoring and Assessment, 193, 1–16. https://doi.org/10.1007/s10661-021-09205-9
  • Mayer, H. and Höppe, P., 1987. Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, 38, 43–49. https://doi.org/10.1007/BF00866252
  • Meteorology, 2022. Kahramanmaraş city for 1970–2022 meteorological data. General Directorate of Meteorology.
  • Metin, A. E. and Çağlak, S., 2022. Assessment of the effect of land use change on bioclimatic comfort conditions in Uşak Province. Turkish Journal of Agriculture and Forestry, 46, 632–641. https://doi.org/10.55730/1300-011X.3032
  • Nouri, A. S., Rodriguez-Algecíras, J. and Matzarakis, A., 2023. Establishing initial urban bioclimatic planning recommendations for Ankara to address existing and future urban thermophysiological risk factors. Urban Climate, 49, 101456. https://doi.org/10.1016/j.uclim.2023.101456
  • Olgyay, V., 1963. Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton University Press, Princeton.
  • Oliveira, S. and Andrade, H., 2007. An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. International Journal of Biometeorology, 52, 69–84. https://doi.org/10.1007/s00484-007-0100-0
  • Orhan, O., Ekercin, S. and Dadaser Celik, F., 2014. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/142939
  • Osczevski, R. J., 1995. The basis of wind chill. Arctic, 48 372–382. https://doi.org/10.14430/arctic1262
  • Ozyavuz, M., Aytin, B. K. and Ertin, D. C., 2018, Analysis of Bioclimatic Comfort of Tekirdag (Turkey) Province with Geographical Information Systems. Journal of Environmental Protection and Ecology, 19, 407–416.
  • Roshan, G., Almomenin, H. S., da Silveira Hirashima, S. Q. and Attia, S., 2019. Estimate of outdoor thermal comfort zones for different climatic regions of Iran. Urban Climate, 27, 8–23. https://doi.org/10.1016/j.uclim.2018.10.005
  • Steadman, R. G., 1979. The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. Journal of Applied Meteorology and Climatology, 18, 861–873.
  • Thom, E. C., 1959. The discomfort index. Weatherwise, 12, 57–61. https://doi.org/10.1080/00431672.1959.9926960
  • Topay, M., 2007. The importance of climate for recreational planning of rural areas: case study of Muğla Province, Turkey. Developments in Tourism Climatology (Edited by: A. Matzarakis, CR de Freitas and D. Scott), 29, 36.
  • Toy, S., Çağlak, S. and Esringü, A. 2022. Assessment of bioclimatic sensitive spatial planning in a Turkish city, Eskisehir. Atmósfera, 35, 719–735. https://doi.org/10.20937/ATM.52963
  • Toy, S., Yilmaz, S. and Yilmaz, H., 2007. Determination of bioclimatic comfort in three different land uses in the city of Erzurum, Turkey. Building and Environment, 42, 1315–1318. https://doi.org/10.1016/j.buildenv.2005.10.031
  • https://kahramanmaras.bel.tr, (08.09.2023)
There are 29 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing, Geographical Information Systems (GIS) in Planning
Journal Section Articles
Authors

Ahmet Doğan Doğruluk 0000-0002-4318-8141

Semih Ekercin 0000-0002-9458-2261

Abdullah Varlık 0000-0003-2072-3313

Early Pub Date September 10, 2024
Publication Date October 1, 2024
Submission Date February 12, 2024
Acceptance Date July 4, 2024
Published in Issue Year 2024

Cite

APA Doğruluk, A. D., Ekercin, S., & Varlık, A. (2024). Determining Residential Areas Based on Bioclimatic Conditions in Kahramanmaraş, Türkiye. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(5), 1215-1224. https://doi.org/10.35414/akufemubid.1435627
AMA Doğruluk AD, Ekercin S, Varlık A. Determining Residential Areas Based on Bioclimatic Conditions in Kahramanmaraş, Türkiye. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2024;24(5):1215-1224. doi:10.35414/akufemubid.1435627
Chicago Doğruluk, Ahmet Doğan, Semih Ekercin, and Abdullah Varlık. “Determining Residential Areas Based on Bioclimatic Conditions in Kahramanmaraş, Türkiye”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 5 (October 2024): 1215-24. https://doi.org/10.35414/akufemubid.1435627.
EndNote Doğruluk AD, Ekercin S, Varlık A (October 1, 2024) Determining Residential Areas Based on Bioclimatic Conditions in Kahramanmaraş, Türkiye. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 5 1215–1224.
IEEE A. D. Doğruluk, S. Ekercin, and A. Varlık, “Determining Residential Areas Based on Bioclimatic Conditions in Kahramanmaraş, Türkiye”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 5, pp. 1215–1224, 2024, doi: 10.35414/akufemubid.1435627.
ISNAD Doğruluk, Ahmet Doğan et al. “Determining Residential Areas Based on Bioclimatic Conditions in Kahramanmaraş, Türkiye”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/5 (October 2024), 1215-1224. https://doi.org/10.35414/akufemubid.1435627.
JAMA Doğruluk AD, Ekercin S, Varlık A. Determining Residential Areas Based on Bioclimatic Conditions in Kahramanmaraş, Türkiye. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1215–1224.
MLA Doğruluk, Ahmet Doğan et al. “Determining Residential Areas Based on Bioclimatic Conditions in Kahramanmaraş, Türkiye”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 5, 2024, pp. 1215-24, doi:10.35414/akufemubid.1435627.
Vancouver Doğruluk AD, Ekercin S, Varlık A. Determining Residential Areas Based on Bioclimatic Conditions in Kahramanmaraş, Türkiye. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(5):1215-24.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.