Research Article
BibTex RIS Cite

3,4-Dimetoksifenilasetonitril’in Kuaterner Amonyum Tipi Dimerik Yüzey Aktif Maddeler İle Faz Transfer Katalizli Siklopentilasyonu

Year 2024, , 1313 - 1322, 02.12.2024
https://doi.org/10.35414/akufemubid.1437228

Abstract

Bir organik sentezde genellikle uygun bir baz ile C, O, N gibi atomlara bağlı asidik karakterde bir protonun koparılması gerekir. Bu amaçla uygun baz ve çözücü sisteminin seçimi önemlidir ki sıklıkla güçlü bazlar ve kurutulmuş çözücüler kullanılması gerekir. Kimya Endüstrisinin gelişmesiyle birlikte artan çevre sorunları sebebiyle, kimyasalların ve kimyasal proseslerin çevreye olumsuz etkilerini azaltmayı veya ortadan kaldırmayı amaç edinen "Yeşil Kimya" kavramı gitgide önem kazanmaktadır. Daha ılımlı bazlar, daha zararsız çözücüler içeren çevre dostu organik sentez prosedürlerinin uygulanması hayati derecede önemlidir. Bu prosesler arasında farklı fazlarda çözünebilen reaktiflerin etkileşmesini sağlayarak, reaksiyonların daha kısa sürede ve yüksek verimlerle gerçekleşmesini sağlayan faz transfer katalizli reaksiyonlar öne çıkmaktadır. Faz transfer katalizi sistemleri enerji sarfiyatını azaltmanın yanı sıra, yan ürün oluşumunu da baskılayarak saflaştırma aşamasında daha az çözücü kullanılması gibi ekonomik avantajlarda sunmaktadır. Organik sentezlerde sıklıkla bir kuarterner amonyum tuzu olan tetrabütilamonyum bromür (TBAB) faz transfer katalizörü olarak kullanılır. Son yıllarda kuaterner amonyum bileşiklerinin dimerik yapıda olanları monomerik olanlara göre üstün yüzey aktif özellikleriyle dikkat çekmekte ve bu bileşikler “gemini sürfaktan” olarak adlandırılmaktadır. Bilim insanları bu bileşiklerin fizikokimyası ve yüzey aktif özellikleri ile ilgili çok sayıda araştırma ortaya koymuşlardır. Fakat bu bileşiklerin tetrabütilamonyum bromür gibi faz transfer katalizli organik sentezlere uygulanması ile ilgili çalışmalar sınırlıdır. Bu çalışmada sekiz farklı dimerik kuaterner amonyum bileşiği sentezlenerek, bu bileşiklerin 3,4-dimetoksifenilasetonitril’in siklopentilasyonunda faz transfer katalizörü olarak davranışı incelenmiştir. Dimerik sürfaktanların 3,4-dimetoksifenilasetonitril’in siklopentilasyon reaksiyonunu geleneksel faz transfer katalizörü TBAB kadar iyi verimlerle katalizlediği, hatta bazı dimerik surfaktanların TBAB’den daha yüksek verimler oluşturduğu tespit edilmiştir.

Ethical Statement

Yazarlar tüm etik standartlara uyduklarını beyan ederler.

References

  • Ahmady, A. R., Hosseinzadeh, P., Solouk, A., Akbari, S., Szulc, A. M. ve Brycki, B. E., 2022. Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Advances in colloid and interface science, 299, 102581. https://doi.org/10.1016/j.cis.2021.102581
  • Baj, S., Chrobok, A. ve Siewniak, A., 2011. New and efficient technique for the synthesis of ɛ-caprolactone using KHSO5 as an oxidising agent in the presence of a phase transfer catalyst. Applied Catalysis A: General, 395 49-52. https://doi.org/10.1016/j.apcata.2011.01.022
  • Barbasiewicz, M., Marciniak, K. ve Fedoryński, M., 2006. Phase transfer alkylation of arylacetonitriles revisited. Tetrahedron Letters, 47, 3871-3874. https://doi.org/10.1016/j.tetlet.2006.03.176
  • Batıgöç, Ç., Akbaş, H. ve Boz, M., 2011. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point. The Journal of Chemical Thermodynamics, 43, 1800-1803. https://doi.org/10.1016/j.jct.2011.06.005
  • Boz, M. ve Baştürk S. S., 2016. Phase Transfer Catalysis with Quaternary Ammonium Type Gemini Surfactants: O-Alkylation of Isovanillin. Journal of Surfactants and Detergents, 19, 663-671. Chai, J., Zhang, H., Liu, N., Liu, N., Chai, H. ve Liu, Z., 2015. Comparison between phase behavior of gemini imidazoliums and monomeric ionic liquid surfactants in W/O microemulsion systems. Journal of Dispersion Science and Technology, 36, 129-135. https://doi.org/10.1080/01932691.2014.890108
  • Das, S., Mukherjee, I., Paul, B. K. ve Ghosh, S. 2014. Physicochemical behaviors of cationic gemini surfactant (14-4-14) based microheterogeneous assemblies. Langmuir, 30, 12483-12493. https://doi.org/10.1021/la5025923
  • Dehmlow, E. V., 1974. Phase‐Transfer Catalyzed Two‐Phase Reactions in Preparative Organic Chemistry. Angewandte Chemie International Edition in English, 13, 170-179. https://doi.org/10.1002/anie.197401701
  • Deng, X., Kamal, M. S., Patil, S., Hussain, S. M. S., Zhou, X., ve Mahmoud, M., 2021. Wettability alteration of locally synthesized cationic gemini surfactants on carbonate rock. Journal of Molecular Liquids, 344, 117817. https://doi.org/10.1016/j.molliq.2021.117817
  • Fedorynski, M., Jezierska-Zieba, M.; Kakol, B., 2008. Phase transfer catalysis in pharmaceutical industry - Where are we? Acta Poloniae Pharmaceutica - Drug Research, 65, 647-654. Jarrouse, J., 1951. The Influence of Quaternary Ammonium Chloride on the Reaction of Labile Hydrogen Compounds and Chlorine Substituted-Chlorine Derivatives. Seances Acad. Sci., Series C, 232, 1424-1426. Jayachandran, J. P. Wang, M. L., 2000. Cycloalkylation of phenylacetonitrile with 1,4-dibromobutane catalyzedby aqueous sodium hydroxide and a new phase transfer reagent, Dq-Br, Applied Catalysis A: General, 198 127–137 https://doi.org/10.1016/S0926-860X(99)00503-7
  • Kasapoğlu, S., Batıgöç, Ç., Boz, M. ve Tetik, Ö., 2023. Experimental Investigation of Cationic Gemini Surfactants: Self‐Assembly, Corrosion Inhibition, Foaming and Dye Solubilization Properties. ChemistrySelect, 8, e202301309. https://doi.org/10.1002/slct.202301309
  • Khalaf, M. M., Tantawy, A. H., Soliman, K. A. ve Abd El-Lateef, H. M., 2020. Cationic gemini-surfactants based on waste cooking oil as new ‘green’inhibitors for N80-steel corrosion in sulphuric acid: A combined empirical and theoretical approaches. Journal of Molecular Structure, 1203, 127442. https://doi.org/10.1016/j.molstruc.2019.127442
  • Lin, Y., Huangshu, L., Junhua, Z., ve Xiujuan, X., 1991. The Mannich reaction between aromatic ketones, aromatic aldehydes and aromatic amines. Synthesis, 1991, 717-718. https://doi.org/10.1055/s-1991-26554
  • Makosza, M., 1975. Two-phase reactions in the chemistry of carbanions and halocarbenes—a useful tool in organic synthesis. First International Conference on Organic Synthesis (Elsevier), 439-462. https://doi.org/10.1016/B978-0-408-70725-1.50012-4
  • Makosza, M., Bialecka, E., 1977. Reactions of organic anions. 11. alkylation of phenylacetonitrile at the interface with aqueous sodiumhydroxide Tetrahedron Letters, 18, 183-186. Makosza, M., 2000. Phase-transfer catalysis. A general green methodology in organic synthesis. Pure and Applied Chemistry, 72, 1399-1403. https://doi.org/10.1351/pac200072071399
  • Makosza, M., ve Serafinowa, B. 1966. Reactions of organic anions. VII. Catalytic alkylation of diphenyl acetonitrile and 2-phenyl butyronitrile with dichloralkanes in an aqueous medium Rocz. Chem, 40, 1647-1655. Menger, F. M. ve Littau, C., 1991. Gemini-surfactants: synthesis and properties. Journal of the American Chemical Society, 113, 1451-1452. https://doi.org/10.1021/ja00004a077
  • Menger, F. M. ve Keiper, J. S., 2000. Gemini surfactants. Angewandte Chemie International Edition, 39, 1906-1920. https://doi.org/10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-Q
  • Mu’azu, N. D., Haladu, S. A., AlGhamdi, J. M., Alqahtani, H. A., Manzar, M. S., Zubair, M., Odewunmi, N. A., Aldossary, N. E., alareefi, H. S. ve Alshaer, Z. H., 2023. Inhibition of low carbon steel corrosion by a cationic gemini surfactant in 10wt.% H2SO4 and 15wt.% HCl under static condition and hydrodynamic flow. South African Journal of Chemical Engineering, 43, 232-244. Naik, S. D. ve Doraiswamy, L., 1998. Phase transfer catalysis: Chemistry and engineering. AIChE Journal, 44, 612-646. https://doi.org/10.1002/aic.690440312
  • Rajendran, V., ve Wang, M.-L., 2008. Dichlorocarbene addition to allyl phenyl ether under phase-transfer catalysis conditions—a kinetic study. Journal of Molecular Catalysis A: Chemical, 288, 23-27. https://doi.org/10.1016/j.molcata.2008.03.015
  • Sarıkaya, İ., Bilgen, S., Ünver, Y., İnan Bektaş, K. ve Akbaş, H., 2021. Synthesis, characterization, antibacterial activity, and interfacial and micellar features of novel cationic gemini surfactants with different spacers. Journal of Surfactants and Detergents, 24, 909-921. https://doi.org/10.1002/jsde.12532
  • Shirakawa, S. ve Maruoka, K. (2013). Recent Developments in Asymmetric Phase-Transfer Reactions. Angew. Chem. Int. Ed., 52, 4312 – 4348. https://doi.org/10.1002/anie.201206835
  • Starks, C. M., 1971. Phase-transfer catalysis. I. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts. Journal of the American Chemical Society, 93, 195-199. https://doi.org/10.1021/ja00730a033
  • Starks, C. M. ve Liotta, C. L., 1978. Phase transfer catalysis: Principles and Techniques (Vol. 326). Academic Press. Tagle, L., Diaz, F., ve Fuenzalida, R. 1994. Polymerization by Phase-Transfer Catalysis. 18.‡ Polycarbonates and Polythiocarbonates from Chlorinated Diphenols. Journal of Macromolecular Science—Pure and Applied Chemistry, 31, 283-290. https://doi.org/10.1080/10601329409351518
  • Vasileva, L., Gaynanova, G., Valeeva, F., Romanova, E., Pavlov, R., Kuznetsov, D., Belyaev, G., Zueva, I., Lyubina, A. ve Voloshina, A., 2023. Synthesis, Properties, and Biomedical Application of Dicationic Gemini Surfactants with Dodecane Spacer and Carbamate Fragments. International Journal of Molecular Sciences, 24, 12312. Wilk, B. K., Mwisiya N. ve Helom, N. J., 2008. Solving a scale-up problem in the o-alkylation of isovanillin under phase-transfer catalysis conditions, Organic Process Research and Development, 12, 785-786. https://doi.org/10.1021/op800058n
  • Wu, J., Gao, H., Shi, D., Yang, Y., Zhang, Y. ve Zhu, W., 2020. Cationic gemini surfactants containing both amide and ester groups: Synthesis, surface properties and antibacterial activity. Journal of Molecular Liquids, 299, 112248. https://doi.org/10.1016/j.molliq.2019.112248
  • Zhang, Y., Pan, Y., Li, P., Zeng, X., Guo, B., Pan, J., Hou, L. ve Yin, X., 2021. Novel Schiff base-based cationic Gemini surfactants as corrosion inhibitors for Q235 carbon steel and printed circuit boards. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126717. https://doi.org/10.1016/j.colsurfa.2021.126717

Phase Transfer Catalyzed Cyclopentylation of 3,4-dimethoxyphenylacetonitrile with Quaternary Ammonium Type Dimeric Surfactants

Year 2024, , 1313 - 1322, 02.12.2024
https://doi.org/10.35414/akufemubid.1437228

Abstract

Generally, in an organic synthesis, an acidic proton bonded to atoms such as C, O, N must be removed with a suitable base. For this purpose, the selection of the appropriate base and solvent system is important that strong bases and dried solvents often need to be used. Due to the increasing environmental problems depending on development of the Chemical Industry, the concept of "Green Chemistry", which aims to reduce or prevent the harmful effects of chemicals and chemical processes on the environment, has gradually gained importance. It is vitally important to implement environmentally friendly organic synthesis procedures that include mild bases and more harmless solvents. Among these processes, phase transfer catalyzed reactions which enable the reactions to occur in a shorter time and with higher yields by enabling the interaction of reagents that can be dissolved in different phases, come into prominence. In addition to reducing energy consumption, phase transfer catalysis systems also offer economic advantages such as using less solvent in the purification stage by suppressing by-product formation. Tetrabutylammonium bromide (TBAB), a quaternary ammonium salt, is frequently used as a phase transfer catalyst in organic syntheses. In recent years, dimeric quaternary ammonium compounds have attracted attention with their superior surface active properties compared to monomeric ones, and these compounds are called "gemini surfactants". Scientists have conducted numerous studies on the physicochemistry and surface active properties of these compounds. However, studies on the application of these compounds to phase transfer catalyzed organic syntheses such as tetrabutylammonium bromide are limited. In this study, eight different dimeric quaternary ammonium compounds (gemini surfactant) were synthesized and the behavior of these compounds as phase transfer catalysts in the cyclopentylation of 3,4-dimethoxyphenylacetonitrile was examined. It has been determined that dimeric surfactants catalyze the cyclopentylation reaction of 3,4-dimethoxyphenylacetonitrile with yields as good as the traditional phase transfer catalyst TBAB, and some dimeric surfactants even produce higher yields than TBAB.

References

  • Ahmady, A. R., Hosseinzadeh, P., Solouk, A., Akbari, S., Szulc, A. M. ve Brycki, B. E., 2022. Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Advances in colloid and interface science, 299, 102581. https://doi.org/10.1016/j.cis.2021.102581
  • Baj, S., Chrobok, A. ve Siewniak, A., 2011. New and efficient technique for the synthesis of ɛ-caprolactone using KHSO5 as an oxidising agent in the presence of a phase transfer catalyst. Applied Catalysis A: General, 395 49-52. https://doi.org/10.1016/j.apcata.2011.01.022
  • Barbasiewicz, M., Marciniak, K. ve Fedoryński, M., 2006. Phase transfer alkylation of arylacetonitriles revisited. Tetrahedron Letters, 47, 3871-3874. https://doi.org/10.1016/j.tetlet.2006.03.176
  • Batıgöç, Ç., Akbaş, H. ve Boz, M., 2011. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point. The Journal of Chemical Thermodynamics, 43, 1800-1803. https://doi.org/10.1016/j.jct.2011.06.005
  • Boz, M. ve Baştürk S. S., 2016. Phase Transfer Catalysis with Quaternary Ammonium Type Gemini Surfactants: O-Alkylation of Isovanillin. Journal of Surfactants and Detergents, 19, 663-671. Chai, J., Zhang, H., Liu, N., Liu, N., Chai, H. ve Liu, Z., 2015. Comparison between phase behavior of gemini imidazoliums and monomeric ionic liquid surfactants in W/O microemulsion systems. Journal of Dispersion Science and Technology, 36, 129-135. https://doi.org/10.1080/01932691.2014.890108
  • Das, S., Mukherjee, I., Paul, B. K. ve Ghosh, S. 2014. Physicochemical behaviors of cationic gemini surfactant (14-4-14) based microheterogeneous assemblies. Langmuir, 30, 12483-12493. https://doi.org/10.1021/la5025923
  • Dehmlow, E. V., 1974. Phase‐Transfer Catalyzed Two‐Phase Reactions in Preparative Organic Chemistry. Angewandte Chemie International Edition in English, 13, 170-179. https://doi.org/10.1002/anie.197401701
  • Deng, X., Kamal, M. S., Patil, S., Hussain, S. M. S., Zhou, X., ve Mahmoud, M., 2021. Wettability alteration of locally synthesized cationic gemini surfactants on carbonate rock. Journal of Molecular Liquids, 344, 117817. https://doi.org/10.1016/j.molliq.2021.117817
  • Fedorynski, M., Jezierska-Zieba, M.; Kakol, B., 2008. Phase transfer catalysis in pharmaceutical industry - Where are we? Acta Poloniae Pharmaceutica - Drug Research, 65, 647-654. Jarrouse, J., 1951. The Influence of Quaternary Ammonium Chloride on the Reaction of Labile Hydrogen Compounds and Chlorine Substituted-Chlorine Derivatives. Seances Acad. Sci., Series C, 232, 1424-1426. Jayachandran, J. P. Wang, M. L., 2000. Cycloalkylation of phenylacetonitrile with 1,4-dibromobutane catalyzedby aqueous sodium hydroxide and a new phase transfer reagent, Dq-Br, Applied Catalysis A: General, 198 127–137 https://doi.org/10.1016/S0926-860X(99)00503-7
  • Kasapoğlu, S., Batıgöç, Ç., Boz, M. ve Tetik, Ö., 2023. Experimental Investigation of Cationic Gemini Surfactants: Self‐Assembly, Corrosion Inhibition, Foaming and Dye Solubilization Properties. ChemistrySelect, 8, e202301309. https://doi.org/10.1002/slct.202301309
  • Khalaf, M. M., Tantawy, A. H., Soliman, K. A. ve Abd El-Lateef, H. M., 2020. Cationic gemini-surfactants based on waste cooking oil as new ‘green’inhibitors for N80-steel corrosion in sulphuric acid: A combined empirical and theoretical approaches. Journal of Molecular Structure, 1203, 127442. https://doi.org/10.1016/j.molstruc.2019.127442
  • Lin, Y., Huangshu, L., Junhua, Z., ve Xiujuan, X., 1991. The Mannich reaction between aromatic ketones, aromatic aldehydes and aromatic amines. Synthesis, 1991, 717-718. https://doi.org/10.1055/s-1991-26554
  • Makosza, M., 1975. Two-phase reactions in the chemistry of carbanions and halocarbenes—a useful tool in organic synthesis. First International Conference on Organic Synthesis (Elsevier), 439-462. https://doi.org/10.1016/B978-0-408-70725-1.50012-4
  • Makosza, M., Bialecka, E., 1977. Reactions of organic anions. 11. alkylation of phenylacetonitrile at the interface with aqueous sodiumhydroxide Tetrahedron Letters, 18, 183-186. Makosza, M., 2000. Phase-transfer catalysis. A general green methodology in organic synthesis. Pure and Applied Chemistry, 72, 1399-1403. https://doi.org/10.1351/pac200072071399
  • Makosza, M., ve Serafinowa, B. 1966. Reactions of organic anions. VII. Catalytic alkylation of diphenyl acetonitrile and 2-phenyl butyronitrile with dichloralkanes in an aqueous medium Rocz. Chem, 40, 1647-1655. Menger, F. M. ve Littau, C., 1991. Gemini-surfactants: synthesis and properties. Journal of the American Chemical Society, 113, 1451-1452. https://doi.org/10.1021/ja00004a077
  • Menger, F. M. ve Keiper, J. S., 2000. Gemini surfactants. Angewandte Chemie International Edition, 39, 1906-1920. https://doi.org/10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-Q
  • Mu’azu, N. D., Haladu, S. A., AlGhamdi, J. M., Alqahtani, H. A., Manzar, M. S., Zubair, M., Odewunmi, N. A., Aldossary, N. E., alareefi, H. S. ve Alshaer, Z. H., 2023. Inhibition of low carbon steel corrosion by a cationic gemini surfactant in 10wt.% H2SO4 and 15wt.% HCl under static condition and hydrodynamic flow. South African Journal of Chemical Engineering, 43, 232-244. Naik, S. D. ve Doraiswamy, L., 1998. Phase transfer catalysis: Chemistry and engineering. AIChE Journal, 44, 612-646. https://doi.org/10.1002/aic.690440312
  • Rajendran, V., ve Wang, M.-L., 2008. Dichlorocarbene addition to allyl phenyl ether under phase-transfer catalysis conditions—a kinetic study. Journal of Molecular Catalysis A: Chemical, 288, 23-27. https://doi.org/10.1016/j.molcata.2008.03.015
  • Sarıkaya, İ., Bilgen, S., Ünver, Y., İnan Bektaş, K. ve Akbaş, H., 2021. Synthesis, characterization, antibacterial activity, and interfacial and micellar features of novel cationic gemini surfactants with different spacers. Journal of Surfactants and Detergents, 24, 909-921. https://doi.org/10.1002/jsde.12532
  • Shirakawa, S. ve Maruoka, K. (2013). Recent Developments in Asymmetric Phase-Transfer Reactions. Angew. Chem. Int. Ed., 52, 4312 – 4348. https://doi.org/10.1002/anie.201206835
  • Starks, C. M., 1971. Phase-transfer catalysis. I. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts. Journal of the American Chemical Society, 93, 195-199. https://doi.org/10.1021/ja00730a033
  • Starks, C. M. ve Liotta, C. L., 1978. Phase transfer catalysis: Principles and Techniques (Vol. 326). Academic Press. Tagle, L., Diaz, F., ve Fuenzalida, R. 1994. Polymerization by Phase-Transfer Catalysis. 18.‡ Polycarbonates and Polythiocarbonates from Chlorinated Diphenols. Journal of Macromolecular Science—Pure and Applied Chemistry, 31, 283-290. https://doi.org/10.1080/10601329409351518
  • Vasileva, L., Gaynanova, G., Valeeva, F., Romanova, E., Pavlov, R., Kuznetsov, D., Belyaev, G., Zueva, I., Lyubina, A. ve Voloshina, A., 2023. Synthesis, Properties, and Biomedical Application of Dicationic Gemini Surfactants with Dodecane Spacer and Carbamate Fragments. International Journal of Molecular Sciences, 24, 12312. Wilk, B. K., Mwisiya N. ve Helom, N. J., 2008. Solving a scale-up problem in the o-alkylation of isovanillin under phase-transfer catalysis conditions, Organic Process Research and Development, 12, 785-786. https://doi.org/10.1021/op800058n
  • Wu, J., Gao, H., Shi, D., Yang, Y., Zhang, Y. ve Zhu, W., 2020. Cationic gemini surfactants containing both amide and ester groups: Synthesis, surface properties and antibacterial activity. Journal of Molecular Liquids, 299, 112248. https://doi.org/10.1016/j.molliq.2019.112248
  • Zhang, Y., Pan, Y., Li, P., Zeng, X., Guo, B., Pan, J., Hou, L. ve Yin, X., 2021. Novel Schiff base-based cationic Gemini surfactants as corrosion inhibitors for Q235 carbon steel and printed circuit boards. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126717. https://doi.org/10.1016/j.colsurfa.2021.126717
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Physical Chemistry (Other)
Journal Section Articles
Authors

Ayşen Şuekinci Yılmaz 0000-0002-1928-0204

Mesut Boz 0000-0002-0668-2933

Early Pub Date November 11, 2024
Publication Date December 2, 2024
Submission Date February 15, 2024
Acceptance Date August 28, 2024
Published in Issue Year 2024

Cite

APA Şuekinci Yılmaz, A., & Boz, M. (2024). 3,4-Dimetoksifenilasetonitril’in Kuaterner Amonyum Tipi Dimerik Yüzey Aktif Maddeler İle Faz Transfer Katalizli Siklopentilasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(6), 1313-1322. https://doi.org/10.35414/akufemubid.1437228
AMA Şuekinci Yılmaz A, Boz M. 3,4-Dimetoksifenilasetonitril’in Kuaterner Amonyum Tipi Dimerik Yüzey Aktif Maddeler İle Faz Transfer Katalizli Siklopentilasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2024;24(6):1313-1322. doi:10.35414/akufemubid.1437228
Chicago Şuekinci Yılmaz, Ayşen, and Mesut Boz. “3,4-Dimetoksifenilasetonitril’in Kuaterner Amonyum Tipi Dimerik Yüzey Aktif Maddeler İle Faz Transfer Katalizli Siklopentilasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 6 (December 2024): 1313-22. https://doi.org/10.35414/akufemubid.1437228.
EndNote Şuekinci Yılmaz A, Boz M (December 1, 2024) 3,4-Dimetoksifenilasetonitril’in Kuaterner Amonyum Tipi Dimerik Yüzey Aktif Maddeler İle Faz Transfer Katalizli Siklopentilasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 6 1313–1322.
IEEE A. Şuekinci Yılmaz and M. Boz, “3,4-Dimetoksifenilasetonitril’in Kuaterner Amonyum Tipi Dimerik Yüzey Aktif Maddeler İle Faz Transfer Katalizli Siklopentilasyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 6, pp. 1313–1322, 2024, doi: 10.35414/akufemubid.1437228.
ISNAD Şuekinci Yılmaz, Ayşen - Boz, Mesut. “3,4-Dimetoksifenilasetonitril’in Kuaterner Amonyum Tipi Dimerik Yüzey Aktif Maddeler İle Faz Transfer Katalizli Siklopentilasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/6 (December 2024), 1313-1322. https://doi.org/10.35414/akufemubid.1437228.
JAMA Şuekinci Yılmaz A, Boz M. 3,4-Dimetoksifenilasetonitril’in Kuaterner Amonyum Tipi Dimerik Yüzey Aktif Maddeler İle Faz Transfer Katalizli Siklopentilasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1313–1322.
MLA Şuekinci Yılmaz, Ayşen and Mesut Boz. “3,4-Dimetoksifenilasetonitril’in Kuaterner Amonyum Tipi Dimerik Yüzey Aktif Maddeler İle Faz Transfer Katalizli Siklopentilasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 6, 2024, pp. 1313-22, doi:10.35414/akufemubid.1437228.
Vancouver Şuekinci Yılmaz A, Boz M. 3,4-Dimetoksifenilasetonitril’in Kuaterner Amonyum Tipi Dimerik Yüzey Aktif Maddeler İle Faz Transfer Katalizli Siklopentilasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(6):1313-22.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.