Research Article
BibTex RIS Cite

Bal Kabağı Sapı Tozunun Katyonik Tekstil Boyası Gideriminde Biyosorbent Olarak Kullanımı ve Optimum Koşulların Belirlenmesi

Year 2024, , 1431 - 1441, 02.12.2024
https://doi.org/10.35414/akufemubid.1446078

Abstract

Bu çalışmada kabak sapı tozu, sulu çözeltilerden Astrazon Red 5BL boyasının adsorpsiyon yöntemiyle gideriminde adsorbent olarak kullanılmıştır. Adsorpsiyon çalışmaları kesikli sistemde çalışılarak adsorbent miktarı, karıştırma hızı, temas süresi, sıcaklık ve iyonik yükün boya giderim verimliliğine etkisi araştırılmıştır. 0,5 g/100 ml adsorbent miktarı, 250 rpm karştırma hızı, 15 dakika temas süresi ve 25 0C sıcaklık gibi çalışma şartlarında en yüksek boya giderimi verimi %94.5 olarak elde edilmiştir. Kinetik veriler değerlendirildiğinde adsorpsiyonun hızlı bir şekilde 15 dakikada tamamlandığı ve yalancı ikinci dereceden kinetik modeline uyumlu olduğu görülmüştür (R2=1). Elde edilen verilerin Langmuir, Freundlich, Temkin ve Dubinin-Radushkevich (D-R) izoterm modellerine uygunluğu incelenmiş ve Freundlich izoterminin, korelasyon katsayısına göre (R2=0.95) en iyi temsil eden model olduğu görülmüştür. Termodinamik parametreler incelendiğinde negatif ∆G0 değeri, adsorpsiyon prosesinin kendiliğinden gerçekleştiğini işaret etmektedir. Negatif ∆H0 ve negatif ∆S0 değerleri sırasıyla adsorpsiyon prosesinin ekzotermik olduğunu ve sistemin düzenli hale geçtiğini göstermiştir. Ayrıca çözeltinin tuz içermesi durumunda adsorpsiyon veriminin tuzun varlığında olumsuz olarak etkilenmediği ortaya konmuştur. Bir tarımsal atık olan kabak sapı tozunun, katyonik boya gideriminde; elde edilmesi kolay, ilave işletme ve kimyasal masrafı gerektirmeyen bir adsorbent olduğu ortaya konmuştur.

References

  • Amar, I. A., Zayid, E. A., Dhikeel, S. A. and Najem, M. Y., 2022. Biosorption removal of methylene blue dye from aqueous solutions using phosphoric acid-treated balanites aegyptiaca seed husks powder. Biointerface Research in Applied Chemistry, 12(6), 7845–7862. https://doi.org/10.33263/BRIAC126.78457862
  • Aravindhan, S., Bharath Kumar, G., Saravanan, M. and Arumugam, A., 2024. Delonix regia biomass as an eco-friendly biosorbent for effective Alizarin Red S textile dye removal: Characterization, kinetics, and isotherm studies. Bioresource Technology Reports, 25, 101721. https://doi.org/10.1016/j.biteb.2023.101721
  • Banat, F., Al-Asheh, S. and Al-Makhadmeh, L., 2003. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochemistry, 39(2),193–202. https://doi.org/10.1016/S0032-9592(03)00065-7
  • Bansal, S., Pandey, P. K. and Upadhayay, S., 2021. Methylene Blue Dye Removal from Wastewater Using Ailanthus Excelsa Roxb as Adsorbent. Water Conservation Science and Engineering, 6(1),1–9. https://doi.org/10.1007/s41101-020-00097-3
  • Cebeci, M. S. ve Şentürk, İ., 2020. Tarımsal Atık Materyal Kullanılarak Sucul Çözeltiden Chrysoidine Y Boyasının Giderimi. International Journal of Multidisciplinary Studies and Innovative Technologies, 4(1),18-28.
  • Chen, M., Wang, X. and Zhang, H., 2021. Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism. Journal of Environmental Management, 288, 112388. https://doi.org/10.1016/j.jenvman.2021.112388
  • Chowdhury, S., Mishra, R., Saha, P. and Kushwaha, P., 2011. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 265(1–3), 159–168. https://doi.org/10.1016/j.desal.2010.07.047
  • Çelik Okumuş, Z. ve Doğan, T. H., 2019. Biyodizeldeki suyun reçine ile uzaklaştırılması: Adsorpsiyon izotermi, kinetiği ve termodinamik incelemesi. European Journal of Science and Technology, 15, 561–570. https://doi.org/10.31590/ejosat.535977
  • Dallel, R., Kesraoui, A. and Seffen, M., 2018. Biosorption of cationic dye onto »phragmites australis» fibers: Characterization and mechanism. Journal of Environmental Chemical Engineering, 6(6), 7247–7256. https://doi.org/10.1016/j.jece.2018.10.024
  • Felista, M. M., Wanyonyi, W. C. and Ongera, G., 2020. Adsorption of anionic dye (Reactive black 5) using macadamia seed Husks: Kinetics and equilibrium studies. Scientific African, 7, e00283. https://doi.org/10.1016/j.sciaf.2020.e00283. Freundlich H.M.F., 1906. Over the adsorption in solution, The Journal of Physical Chemistry, 57, 385-470.
  • Garg, V. K., Gupta, R., Yadav, A. B. and Kumar, R., 2003. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 8(2), 121–124. https://doi.org/10.1016/S0960-8524(03)00058-0
  • Gören, M., Murathan, H. B., Kaya, N. ve Murathan, A. M., 2023. Çam kozalağından üretilmiş modifiye aktif karbon ile sulu çözeltiden Rodamin B boyasının adsorpsiyonu. Politeknik Dergisi, 26(1), 283–292. https://doi.org/10.2339/politeknik.989900
  • Güneş, E. and Atav, R., 2017. The use of nutshell firstly as a natural dye for cotton and wool and then as a natural adsorbent for colour removal of basic dye effluent. Coloration Technology, 133(1), 88–93. https://doi.org/10.1111/cote.12255
  • Han, Z., Sun, L., Chu, Y., Wang, J., Wei, C., Jiang, Q., Han, C., Yan, H. and Song, X., 2023. States of graphene oxide and surface functional groups amid adsorption of dyes and heavy metal ions. Chinese Journal of Chemical Engineering, 63, 197–208. https://doi.org/10.1016/j.cjche.2023.05.005
  • Hassan, W., Noureen, S., Mustaqeem, M., Saleh, T. A. and Zafar, S., 2020. Efficient adsorbent derived from Haloxylon recurvum plant for the adsorption of acid brown dye: Kinetics, isotherm and thermodynamic optimization. Surfaces and Interfaces, 20. https://doi.org/10.1016/j.surfin.2020.100510
  • Homagai, P. L., Poudel, R., Poudel, S. and Bhattarai, A., 2022. Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4), e09261. https://doi.org/10.1016/j.heliyon.2022.e09261
  • Kamel, M. M., Helmy, H. M., Mashaly, H. M. and Kafafy, H. H., 2010. Ultrasonic assisted dyeing: Dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%. Ultrasonics Sonochemistry, 17(1), 92–97. https://doi.org/10.1016/j.ultsonch.2009.06.001
  • Kavci, E., Erkmen, J. and Bingöl, M. S., 2023. Removal of methylene blue dye from aqueous solution using citric acid modified apricot stone. Chemical Engineering Communications, 210(2), 165–180. https://doi.org/10.1080/00986445.2021.2009812
  • Kaykıoğlu, G., 2016. Kolemanit ve üleksit atığı ile sulu çözeltilerden metilen mavisi giderimi: Kinetik ve izoterm Değerlendirmesi. Celal Bayar Üniversitedi Fen Bilimleri Dergisi, 12(3), 499–509.
  • Kıranşan, M., 2021. An investigation on the removal of anionic and cationic dyes in wastewater by using sono-photocatalytic oxidation processes, Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 8(19), 43–54. https://doi.org/10.38065/euroasiaorg.908
  • Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. K. Sven. Vetensk. Handl., 24 (4), 1-39.
  • Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361-1403.
  • Lim, L. B. L., Priyantha, N., Tennakoon, D. T. B., Chieng, H. I., Dahri, M. K. and Suklueng, M., 2017. Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry, 10, S3216–S3228. https://doi.org/10.1016/j.arabjc.2013.12.018
  • Liu, Y., Zhu, W., Guan, K., Peng, C. and Wu, J., 2018. Freeze-casting of alumina ultra-filtration membranes with good performance for anionic dye separation. Ceramics International, 44(10), 11901–11904. https://doi.org/10.1016/j.ceramint.2018.03.160
  • Marin, N. M., Pascu, L. F., Demba, A., Nita-Lazar, M., Badea, I. A. and Aboul-Enein, H. Y., 2019. Removal of the Acid Orange 10 by ion exchange and microbiological methods. International Journal of Environmental Science and Technology, 16(10), 6357–6366. https://doi.org/10.1007/s13762-018-2164-2
  • Mousa, K. M. ve Taha, A. H., 2015. Adsorption of reactive blue dye onto natural and modified wheat straw. Journal of Chemical Engineering & Process Technology, 06. https://doi.org/10.4172/2157-7048.1000260
  • Mustapha, D. S., Bawa-Allah, K. A., 2020. Differential toxicities of anionic and nonionic surfactants in fish. Environmental Science and Pollution Research, 27(14), 16754–16762. https://doi.org/10.1007/s11356-020-08212-6
  • Riccobono, G., Pastorella, G., Vicari, F., D’Angelo, A., Galia, A., Quatrini, P. and Scialdone, O., 2017. Abatement of AO7 in a divided microbial fuel cells by sequential cathodic and anodic treatment powered by different microorganisms. Journal of Electroanalytical Chemistry, 799, 293–298. https://doi.org/10.1016/j.jelechem.2017.06.003
  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A. and Idris, A., 2011. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1–3), 1–13. https://doi.org/10.1016/j.desal.2011.07.019
  • Santos, D. H. S., Duarte, J. L. S., Tavares, M. G. R., Tavares, M. G., Friedrich, L. C., Meili, L., Pimentel, W. R. O., Tonholo, J. and Zanta, C. L. P. S., 2020. Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes. Chemical Engineering and Processing - Process Intensification, 153, 107940. https://doi.org/10.1016/j.cep.2020.107940
  • Sh. Gohr, M., Abd-Elhamid, A. I., El-Shanshory, A. A. and Soliman, H. M. A., 2022. Adsorption of cationic dyes onto chemically modified activated carbon: Kinetics and thermodynamic study. Journal of Molecular Liquids, 346, 118227. https://doi.org/10.1016/j.molliq.2021.118227
  • Solangi, N. H., Kumar, J., Mazari, S. A., Ahmed, S., Fatima, N. and Mubarak, N. M., 2021. Development of fruit waste derived bio-adsorbents for wastewater treatment: A review. Journal of Hazardous Materials, 416,125848. https://doi.org/10.1016/j.jhazmat.2021.125848
  • Takabi, A. S., Shirani, M. and Semnani, A., 2021. Apple stem as a high performance cellulose based biosorbent for low cost and eco-friendly adsorption of crystal violet from aqueous solutions using experimental design: Mechanism, kinetic and thermodynamics. Environmental Technology and Innovation, 24, 101947. https://doi.org/10.1016/j.eti.2021.101947
  • Tanyıldızı, M. Ş. ve Uygut, M. A., 2016. Çam kozalağıyla bazik mavi 3 Adsorpsiyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 169–174.
  • Temkin, M., Pyzhev, V., 1940. Recent modifications to langmuir isotherms. Acta Physico-Chimica Sinica, 12, 217–222.
  • Tran, H. N., You, S. J., Hosseini-Bandegharaei, A. and Chao, H. P. 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Research, 120, 88-116.
  • Tseng, R. L., Tseng, S. K., Wu, F. C. 2006. Preparation of high surface area carbons from Corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279(1–3), 69–78. https://doi.org/10.1016/j.colsurfa.2005.12.042
  • Wang, J., Sun, C., Huang, Q., Chi, Y. and Yan, J., 2021. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg / Zn modified magnetic biochars. Journal of Hazardous Materials, 419, 126486. https://doi.org/10.1016/j.jhazmat.2021.126486
  • Xu, L., Pan, C., Li, S., Yin, C., Zhu, J., Pan, Y. and Feng, Q., 2021. Electrostatic Self-Assembly Synthesis of Three-Dimensional Mesoporous Lepidocrocite-Type Layered Sodium Titanate as a Superior Adsorbent for Selective Removal of Cationic Dyes via an Ion-Exchange Mechanism. Langmuir, 37(19), 6080–6095. https://doi.org/10.1021/acs.langmuir.1c00913
  • Yönten, V., Sanyürek, N. K. and Kivanç, M. R., 2020. A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surfaces and Interfaces, 20, 1–8. https://doi.org/10.1016/j.surfin.2020.100529
  • Zafar, A. M., Naeem, A., Minhas, M. A., Hasan, M. J., Rafique, S. and Ikhlaq, A., 2024. Removal of reactive dyes from textile industrial effluent using electrocoagulation in different parametric conditions of aluminum electrodes. Total Environment Advances, 9, 200087. https://doi.org/10.1016/j.teadva.2023.200087

Use of Powdered Pumpkin Stalk as a Biosorbent in Cationic Textile Dye Removal and Determination of Optimum Conditions

Year 2024, , 1431 - 1441, 02.12.2024
https://doi.org/10.35414/akufemubid.1446078

Abstract

In this study, powdered pumpkin stalk was used as an adsorbent in the removal of Astrazon Red 5BL dye from aqueous solutions by adsorption method. Adsorption studies were conducted in a batch system and the effects of adsorbent dosage, mixing speed, contact time, temperature and ionic strenght on dye removal efficiency were investigated. The highest dye removal efficiency was obtained as 94.5% under operating conditions such as 0.5 g/100 ml adsorbent dosage, 250 rpm mixing speed, 15 minutes contact time and 25 0C temperature. When the kinetic data were evaluated, it was seen that the adsorption was completed quickly in 15 minutes and was compatible with the pseudo-second order kinetic model (R2 = 1). The suitability of the obtained data to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherm models was examined and it was found that the Freundlich isotherm was the most representative model according to the correlation coefficient (R2 = 0.95). When thermodynamic parameters are examined, a negative ∆G0 value indicates that the adsorption process occurs spontaneously. Negative ∆H0 and negative ∆S0 values respectively showed that the adsorption process was exothermic and the system became ordered. It has also been shown that if the solution contains salt, the adsorption efficiency is not negatively affected by the presence of salt. In the cationic dye removal of powdered pumpkin stalk, which is an agricultural waste; It has been demonstrated that it is an adsorbent that is easy to obtain and does not require additional operating and chemical costs.

References

  • Amar, I. A., Zayid, E. A., Dhikeel, S. A. and Najem, M. Y., 2022. Biosorption removal of methylene blue dye from aqueous solutions using phosphoric acid-treated balanites aegyptiaca seed husks powder. Biointerface Research in Applied Chemistry, 12(6), 7845–7862. https://doi.org/10.33263/BRIAC126.78457862
  • Aravindhan, S., Bharath Kumar, G., Saravanan, M. and Arumugam, A., 2024. Delonix regia biomass as an eco-friendly biosorbent for effective Alizarin Red S textile dye removal: Characterization, kinetics, and isotherm studies. Bioresource Technology Reports, 25, 101721. https://doi.org/10.1016/j.biteb.2023.101721
  • Banat, F., Al-Asheh, S. and Al-Makhadmeh, L., 2003. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochemistry, 39(2),193–202. https://doi.org/10.1016/S0032-9592(03)00065-7
  • Bansal, S., Pandey, P. K. and Upadhayay, S., 2021. Methylene Blue Dye Removal from Wastewater Using Ailanthus Excelsa Roxb as Adsorbent. Water Conservation Science and Engineering, 6(1),1–9. https://doi.org/10.1007/s41101-020-00097-3
  • Cebeci, M. S. ve Şentürk, İ., 2020. Tarımsal Atık Materyal Kullanılarak Sucul Çözeltiden Chrysoidine Y Boyasının Giderimi. International Journal of Multidisciplinary Studies and Innovative Technologies, 4(1),18-28.
  • Chen, M., Wang, X. and Zhang, H., 2021. Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism. Journal of Environmental Management, 288, 112388. https://doi.org/10.1016/j.jenvman.2021.112388
  • Chowdhury, S., Mishra, R., Saha, P. and Kushwaha, P., 2011. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 265(1–3), 159–168. https://doi.org/10.1016/j.desal.2010.07.047
  • Çelik Okumuş, Z. ve Doğan, T. H., 2019. Biyodizeldeki suyun reçine ile uzaklaştırılması: Adsorpsiyon izotermi, kinetiği ve termodinamik incelemesi. European Journal of Science and Technology, 15, 561–570. https://doi.org/10.31590/ejosat.535977
  • Dallel, R., Kesraoui, A. and Seffen, M., 2018. Biosorption of cationic dye onto »phragmites australis» fibers: Characterization and mechanism. Journal of Environmental Chemical Engineering, 6(6), 7247–7256. https://doi.org/10.1016/j.jece.2018.10.024
  • Felista, M. M., Wanyonyi, W. C. and Ongera, G., 2020. Adsorption of anionic dye (Reactive black 5) using macadamia seed Husks: Kinetics and equilibrium studies. Scientific African, 7, e00283. https://doi.org/10.1016/j.sciaf.2020.e00283. Freundlich H.M.F., 1906. Over the adsorption in solution, The Journal of Physical Chemistry, 57, 385-470.
  • Garg, V. K., Gupta, R., Yadav, A. B. and Kumar, R., 2003. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 8(2), 121–124. https://doi.org/10.1016/S0960-8524(03)00058-0
  • Gören, M., Murathan, H. B., Kaya, N. ve Murathan, A. M., 2023. Çam kozalağından üretilmiş modifiye aktif karbon ile sulu çözeltiden Rodamin B boyasının adsorpsiyonu. Politeknik Dergisi, 26(1), 283–292. https://doi.org/10.2339/politeknik.989900
  • Güneş, E. and Atav, R., 2017. The use of nutshell firstly as a natural dye for cotton and wool and then as a natural adsorbent for colour removal of basic dye effluent. Coloration Technology, 133(1), 88–93. https://doi.org/10.1111/cote.12255
  • Han, Z., Sun, L., Chu, Y., Wang, J., Wei, C., Jiang, Q., Han, C., Yan, H. and Song, X., 2023. States of graphene oxide and surface functional groups amid adsorption of dyes and heavy metal ions. Chinese Journal of Chemical Engineering, 63, 197–208. https://doi.org/10.1016/j.cjche.2023.05.005
  • Hassan, W., Noureen, S., Mustaqeem, M., Saleh, T. A. and Zafar, S., 2020. Efficient adsorbent derived from Haloxylon recurvum plant for the adsorption of acid brown dye: Kinetics, isotherm and thermodynamic optimization. Surfaces and Interfaces, 20. https://doi.org/10.1016/j.surfin.2020.100510
  • Homagai, P. L., Poudel, R., Poudel, S. and Bhattarai, A., 2022. Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4), e09261. https://doi.org/10.1016/j.heliyon.2022.e09261
  • Kamel, M. M., Helmy, H. M., Mashaly, H. M. and Kafafy, H. H., 2010. Ultrasonic assisted dyeing: Dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%. Ultrasonics Sonochemistry, 17(1), 92–97. https://doi.org/10.1016/j.ultsonch.2009.06.001
  • Kavci, E., Erkmen, J. and Bingöl, M. S., 2023. Removal of methylene blue dye from aqueous solution using citric acid modified apricot stone. Chemical Engineering Communications, 210(2), 165–180. https://doi.org/10.1080/00986445.2021.2009812
  • Kaykıoğlu, G., 2016. Kolemanit ve üleksit atığı ile sulu çözeltilerden metilen mavisi giderimi: Kinetik ve izoterm Değerlendirmesi. Celal Bayar Üniversitedi Fen Bilimleri Dergisi, 12(3), 499–509.
  • Kıranşan, M., 2021. An investigation on the removal of anionic and cationic dyes in wastewater by using sono-photocatalytic oxidation processes, Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 8(19), 43–54. https://doi.org/10.38065/euroasiaorg.908
  • Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. K. Sven. Vetensk. Handl., 24 (4), 1-39.
  • Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361-1403.
  • Lim, L. B. L., Priyantha, N., Tennakoon, D. T. B., Chieng, H. I., Dahri, M. K. and Suklueng, M., 2017. Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry, 10, S3216–S3228. https://doi.org/10.1016/j.arabjc.2013.12.018
  • Liu, Y., Zhu, W., Guan, K., Peng, C. and Wu, J., 2018. Freeze-casting of alumina ultra-filtration membranes with good performance for anionic dye separation. Ceramics International, 44(10), 11901–11904. https://doi.org/10.1016/j.ceramint.2018.03.160
  • Marin, N. M., Pascu, L. F., Demba, A., Nita-Lazar, M., Badea, I. A. and Aboul-Enein, H. Y., 2019. Removal of the Acid Orange 10 by ion exchange and microbiological methods. International Journal of Environmental Science and Technology, 16(10), 6357–6366. https://doi.org/10.1007/s13762-018-2164-2
  • Mousa, K. M. ve Taha, A. H., 2015. Adsorption of reactive blue dye onto natural and modified wheat straw. Journal of Chemical Engineering & Process Technology, 06. https://doi.org/10.4172/2157-7048.1000260
  • Mustapha, D. S., Bawa-Allah, K. A., 2020. Differential toxicities of anionic and nonionic surfactants in fish. Environmental Science and Pollution Research, 27(14), 16754–16762. https://doi.org/10.1007/s11356-020-08212-6
  • Riccobono, G., Pastorella, G., Vicari, F., D’Angelo, A., Galia, A., Quatrini, P. and Scialdone, O., 2017. Abatement of AO7 in a divided microbial fuel cells by sequential cathodic and anodic treatment powered by different microorganisms. Journal of Electroanalytical Chemistry, 799, 293–298. https://doi.org/10.1016/j.jelechem.2017.06.003
  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A. and Idris, A., 2011. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1–3), 1–13. https://doi.org/10.1016/j.desal.2011.07.019
  • Santos, D. H. S., Duarte, J. L. S., Tavares, M. G. R., Tavares, M. G., Friedrich, L. C., Meili, L., Pimentel, W. R. O., Tonholo, J. and Zanta, C. L. P. S., 2020. Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes. Chemical Engineering and Processing - Process Intensification, 153, 107940. https://doi.org/10.1016/j.cep.2020.107940
  • Sh. Gohr, M., Abd-Elhamid, A. I., El-Shanshory, A. A. and Soliman, H. M. A., 2022. Adsorption of cationic dyes onto chemically modified activated carbon: Kinetics and thermodynamic study. Journal of Molecular Liquids, 346, 118227. https://doi.org/10.1016/j.molliq.2021.118227
  • Solangi, N. H., Kumar, J., Mazari, S. A., Ahmed, S., Fatima, N. and Mubarak, N. M., 2021. Development of fruit waste derived bio-adsorbents for wastewater treatment: A review. Journal of Hazardous Materials, 416,125848. https://doi.org/10.1016/j.jhazmat.2021.125848
  • Takabi, A. S., Shirani, M. and Semnani, A., 2021. Apple stem as a high performance cellulose based biosorbent for low cost and eco-friendly adsorption of crystal violet from aqueous solutions using experimental design: Mechanism, kinetic and thermodynamics. Environmental Technology and Innovation, 24, 101947. https://doi.org/10.1016/j.eti.2021.101947
  • Tanyıldızı, M. Ş. ve Uygut, M. A., 2016. Çam kozalağıyla bazik mavi 3 Adsorpsiyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 169–174.
  • Temkin, M., Pyzhev, V., 1940. Recent modifications to langmuir isotherms. Acta Physico-Chimica Sinica, 12, 217–222.
  • Tran, H. N., You, S. J., Hosseini-Bandegharaei, A. and Chao, H. P. 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Research, 120, 88-116.
  • Tseng, R. L., Tseng, S. K., Wu, F. C. 2006. Preparation of high surface area carbons from Corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279(1–3), 69–78. https://doi.org/10.1016/j.colsurfa.2005.12.042
  • Wang, J., Sun, C., Huang, Q., Chi, Y. and Yan, J., 2021. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg / Zn modified magnetic biochars. Journal of Hazardous Materials, 419, 126486. https://doi.org/10.1016/j.jhazmat.2021.126486
  • Xu, L., Pan, C., Li, S., Yin, C., Zhu, J., Pan, Y. and Feng, Q., 2021. Electrostatic Self-Assembly Synthesis of Three-Dimensional Mesoporous Lepidocrocite-Type Layered Sodium Titanate as a Superior Adsorbent for Selective Removal of Cationic Dyes via an Ion-Exchange Mechanism. Langmuir, 37(19), 6080–6095. https://doi.org/10.1021/acs.langmuir.1c00913
  • Yönten, V., Sanyürek, N. K. and Kivanç, M. R., 2020. A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surfaces and Interfaces, 20, 1–8. https://doi.org/10.1016/j.surfin.2020.100529
  • Zafar, A. M., Naeem, A., Minhas, M. A., Hasan, M. J., Rafique, S. and Ikhlaq, A., 2024. Removal of reactive dyes from textile industrial effluent using electrocoagulation in different parametric conditions of aluminum electrodes. Total Environment Advances, 9, 200087. https://doi.org/10.1016/j.teadva.2023.200087
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Environmental Management (Other)
Journal Section Articles
Authors

Sevgi Fersiz 0000-0003-3382-7891

Early Pub Date November 11, 2024
Publication Date December 2, 2024
Submission Date March 2, 2024
Acceptance Date August 1, 2024
Published in Issue Year 2024

Cite

APA Fersiz, S. (2024). Bal Kabağı Sapı Tozunun Katyonik Tekstil Boyası Gideriminde Biyosorbent Olarak Kullanımı ve Optimum Koşulların Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(6), 1431-1441. https://doi.org/10.35414/akufemubid.1446078
AMA Fersiz S. Bal Kabağı Sapı Tozunun Katyonik Tekstil Boyası Gideriminde Biyosorbent Olarak Kullanımı ve Optimum Koşulların Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2024;24(6):1431-1441. doi:10.35414/akufemubid.1446078
Chicago Fersiz, Sevgi. “Bal Kabağı Sapı Tozunun Katyonik Tekstil Boyası Gideriminde Biyosorbent Olarak Kullanımı Ve Optimum Koşulların Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 6 (December 2024): 1431-41. https://doi.org/10.35414/akufemubid.1446078.
EndNote Fersiz S (December 1, 2024) Bal Kabağı Sapı Tozunun Katyonik Tekstil Boyası Gideriminde Biyosorbent Olarak Kullanımı ve Optimum Koşulların Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 6 1431–1441.
IEEE S. Fersiz, “Bal Kabağı Sapı Tozunun Katyonik Tekstil Boyası Gideriminde Biyosorbent Olarak Kullanımı ve Optimum Koşulların Belirlenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 6, pp. 1431–1441, 2024, doi: 10.35414/akufemubid.1446078.
ISNAD Fersiz, Sevgi. “Bal Kabağı Sapı Tozunun Katyonik Tekstil Boyası Gideriminde Biyosorbent Olarak Kullanımı Ve Optimum Koşulların Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/6 (December 2024), 1431-1441. https://doi.org/10.35414/akufemubid.1446078.
JAMA Fersiz S. Bal Kabağı Sapı Tozunun Katyonik Tekstil Boyası Gideriminde Biyosorbent Olarak Kullanımı ve Optimum Koşulların Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:1431–1441.
MLA Fersiz, Sevgi. “Bal Kabağı Sapı Tozunun Katyonik Tekstil Boyası Gideriminde Biyosorbent Olarak Kullanımı Ve Optimum Koşulların Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 6, 2024, pp. 1431-4, doi:10.35414/akufemubid.1446078.
Vancouver Fersiz S. Bal Kabağı Sapı Tozunun Katyonik Tekstil Boyası Gideriminde Biyosorbent Olarak Kullanımı ve Optimum Koşulların Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(6):1431-4.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.