Research Article
BibTex RIS Cite

Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi

Year 2020, , 83 - 89, 17.03.2020
https://doi.org/10.35414/akufemubid.591117

Abstract

Yapılan bu çalışmada
kaolin kili farklı sıcaklıklarda metakaoline dönüştürülmüş ve ardından bu
malzemeler kullanılarak metakaolin esaslı geopolimer harç örnekleri
üretilmiştir. Elde edilen bulgulara göre farklı sıcaklıklarda kalsine edilen
metakaolin malzemesinin örnek özelliklerinde gösterdiği değişimler
incelenmiştir. Metakaolin esaslı geopolimer harçların hazırlanmasında alkali
aktifleştirici olarak 9M konsantrasyonlu NaOH çözeltisi ve sodyum silikat
solüsyonu kullanılmıştır. Harçlar, 40 mm x 40 mm x 160 mm metal kalıplarda
vibrasyon yöntemiyle şekillendirilmiştir. Ardından numuneler termal kür
prosesinin gerçekleştirilmesi için laboratuvar tipi etüve yerleştirilmiş ve 24
saat süre ile 90 oC’de kür edilmiştir. Sonuç olarak, tüm örnek
grupları içerisinde en yüksek basınç dayanım değeri 700 oC’de
kalsine edilen metakaolin esaslı geopolimer harçlarda 59.7 MPa olarak elde
edilirken, en düşük basınç dayanım değeri 27.8 MPa ile 900 oC’de
elde edilen metakaolin esaslı geopolimer harçlarda elde edilmiştir. Bununla
birlikte metakaolin kalsinasyon sıcaklığının basınç dayanım değerleri üzerinde
etkisinin net olmadığı ve nispeten daha yüksek kalsinasyon sıcaklıklarında,
metakaolin malzemesinin amorf yapısının bozulması nedeniyle basınç dayanım
değerlerinin belirgin bir şekilde azaldığı belirlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

213M294

References

  • ASTM C 618 - 17a, 2017. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM-USA.
  • Castelein, O., Soulestin, B., Bonnet, J.P., Blanchart, P., 2001. The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceramics International. 27, 517–522.
  • Cioffi, R., Maffucci, L., Santoro, L., 2003. Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resources, Conservation and Recycling. 40, 27–38.
  • Curcio, F., DeAngelis, B.A., Pagliolico, S., 1998. Metakaolin as a pozzolanic microfiller for high-performance mortars. Cement and Concrete Research. 28, 803–809.
  • Elimbi, A., Tchakoute, H.K., Njopwouo, D., 2011. Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Construction and Building Materials. 25, 2805–2812.
  • He, J., Zhang, J., Yu, Y., Zhang, G., 2012. The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: A comparative study. Construction and Building Materials. 30, 80–91.
  • Ozer, I. and Soyer-Uzun, S., 2015. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios. Ceramics International. 41, 10192–10198.
  • Kaya, K., Soyer-Uzun, S., 2016. Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems. Ceramics International. 42, 7406–7413.
  • Kenne Diffo, B.B., Elimbi, A., Cyr, M., Dika Manga, J., Tchakoute Kouamo, H., 2015. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. Journal of Asian Ceramic Societies. 3, 130–138.
  • Kong, D.L.Y., Sanjayan, J.G., Sagoe-Crentsil, K., 2007. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research. 37, 1583–1589.
  • Logesh Kumar, M. and Revathi, V., 2016. Metakaolin bottom ash blend geopolymer mortar - A feasibility study. Construction and Building Materials. 114, 1–5.
  • Kuenzel, C., Neville, T.P., Donatello, S., Vandeperre, L., Boccaccini, A.R., Cheeseman, C.R., 2013. Influence of metakaolin characteristics on the mechanical properties of geopolymers. Applied Clay Science. 83–84, 308–314.
  • Marín-López, C., Reyes Araiza, J.L., Manzano-Ramírez, A., Rubio Avalos, J.C., Perez-Bueno, J.J., Muñiz-Villareal, M.S., Ventura-Ramos, E., Vorobiev, Y., 2009. Synthesis and characterization of a concrete based on metakaolin geopolymer. Inorganic Materials. 45, 1429–1432.
  • Pacheco-Torgal, F., Moura, D., Ding, Y., Jalali, S., 2011. Composition, strength and workability of alkali-activated metakaolin based mortars. Construction and Building Materials. 25, 3732–3745.
  • Rovnaník, P., 2010. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials. 24, 1176–1183.
  • van Jaarsveld, J.G., van Deventer, J.S., Lukey, G., 2002. The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal. 89, 63–73.
  • Tchakouté, H.K., Rüscher, C.H., Kong, S., Kamseu, E., Leonelli, C., 2016. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Construction and Building Materials. 114, 276–289.
  • TS EN 196-1, 2016. Methods of testing cement - Part 1: Determination of strength, TSE-Turkey.
  • TS EN 771-1, 2015. Specification for masonry units - Part 1: Clay masonry units, TSE-Turkey.
  • TS EN 772-4, 2000. Methods of test for masonry units - Part 4: Determination of real and bulk density and of total and open porosity for natural stone masonry units, TSE-Turkey.
  • Villa, C., Pecina, E.T., Torres, R., Gómez, L., 2010. Geopolymer synthesis using alkaline activation of natural zeolite. Construction and Building Materials. 24, 2084–2090.
  • Zibouche, F., Kerdjoudj, H., d’Espinose de Lacaillerie, J.-B., Van Damme, H., 2009. Geopolymers from Algerian metakaolin. Influence of secondary minerals. Applied Clay Science. 43, 453–458.
Year 2020, , 83 - 89, 17.03.2020
https://doi.org/10.35414/akufemubid.591117

Abstract

Project Number

213M294

References

  • ASTM C 618 - 17a, 2017. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM-USA.
  • Castelein, O., Soulestin, B., Bonnet, J.P., Blanchart, P., 2001. The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceramics International. 27, 517–522.
  • Cioffi, R., Maffucci, L., Santoro, L., 2003. Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resources, Conservation and Recycling. 40, 27–38.
  • Curcio, F., DeAngelis, B.A., Pagliolico, S., 1998. Metakaolin as a pozzolanic microfiller for high-performance mortars. Cement and Concrete Research. 28, 803–809.
  • Elimbi, A., Tchakoute, H.K., Njopwouo, D., 2011. Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Construction and Building Materials. 25, 2805–2812.
  • He, J., Zhang, J., Yu, Y., Zhang, G., 2012. The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: A comparative study. Construction and Building Materials. 30, 80–91.
  • Ozer, I. and Soyer-Uzun, S., 2015. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios. Ceramics International. 41, 10192–10198.
  • Kaya, K., Soyer-Uzun, S., 2016. Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems. Ceramics International. 42, 7406–7413.
  • Kenne Diffo, B.B., Elimbi, A., Cyr, M., Dika Manga, J., Tchakoute Kouamo, H., 2015. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. Journal of Asian Ceramic Societies. 3, 130–138.
  • Kong, D.L.Y., Sanjayan, J.G., Sagoe-Crentsil, K., 2007. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research. 37, 1583–1589.
  • Logesh Kumar, M. and Revathi, V., 2016. Metakaolin bottom ash blend geopolymer mortar - A feasibility study. Construction and Building Materials. 114, 1–5.
  • Kuenzel, C., Neville, T.P., Donatello, S., Vandeperre, L., Boccaccini, A.R., Cheeseman, C.R., 2013. Influence of metakaolin characteristics on the mechanical properties of geopolymers. Applied Clay Science. 83–84, 308–314.
  • Marín-López, C., Reyes Araiza, J.L., Manzano-Ramírez, A., Rubio Avalos, J.C., Perez-Bueno, J.J., Muñiz-Villareal, M.S., Ventura-Ramos, E., Vorobiev, Y., 2009. Synthesis and characterization of a concrete based on metakaolin geopolymer. Inorganic Materials. 45, 1429–1432.
  • Pacheco-Torgal, F., Moura, D., Ding, Y., Jalali, S., 2011. Composition, strength and workability of alkali-activated metakaolin based mortars. Construction and Building Materials. 25, 3732–3745.
  • Rovnaník, P., 2010. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials. 24, 1176–1183.
  • van Jaarsveld, J.G., van Deventer, J.S., Lukey, G., 2002. The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal. 89, 63–73.
  • Tchakouté, H.K., Rüscher, C.H., Kong, S., Kamseu, E., Leonelli, C., 2016. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Construction and Building Materials. 114, 276–289.
  • TS EN 196-1, 2016. Methods of testing cement - Part 1: Determination of strength, TSE-Turkey.
  • TS EN 771-1, 2015. Specification for masonry units - Part 1: Clay masonry units, TSE-Turkey.
  • TS EN 772-4, 2000. Methods of test for masonry units - Part 4: Determination of real and bulk density and of total and open porosity for natural stone masonry units, TSE-Turkey.
  • Villa, C., Pecina, E.T., Torres, R., Gómez, L., 2010. Geopolymer synthesis using alkaline activation of natural zeolite. Construction and Building Materials. 24, 2084–2090.
  • Zibouche, F., Kerdjoudj, H., d’Espinose de Lacaillerie, J.-B., Van Damme, H., 2009. Geopolymers from Algerian metakaolin. Influence of secondary minerals. Applied Clay Science. 43, 453–458.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Gökhan Görhan 0000-0002-9925-1568

Project Number 213M294
Publication Date March 17, 2020
Submission Date July 12, 2019
Published in Issue Year 2020

Cite

APA Görhan, G. (2020). Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(1), 83-89. https://doi.org/10.35414/akufemubid.591117
AMA Görhan G. Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2020;20(1):83-89. doi:10.35414/akufemubid.591117
Chicago Görhan, Gökhan. “Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, no. 1 (March 2020): 83-89. https://doi.org/10.35414/akufemubid.591117.
EndNote Görhan G (March 1, 2020) Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 1 83–89.
IEEE G. Görhan, “Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, pp. 83–89, 2020, doi: 10.35414/akufemubid.591117.
ISNAD Görhan, Gökhan. “Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/1 (March 2020), 83-89. https://doi.org/10.35414/akufemubid.591117.
JAMA Görhan G. Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:83–89.
MLA Görhan, Gökhan. “Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, 2020, pp. 83-89, doi:10.35414/akufemubid.591117.
Vancouver Görhan G. Geopolimer Harç Özelliklerine Metakaolin Kalsinasyon Sıcaklığının Etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(1):83-9.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.