Research Article
BibTex RIS Cite

Kenmotsu Manifoldlarda Konformal Ricci Solitonlar

Year 2019, , 635 - 642, 31.12.2019
https://doi.org/10.35414/akufemubid.623574

Abstract

Bu makalede, Kenmotsu
manifoldlarında konformal Ricci solitonlarını karakterize eden koşullar
incelenmiştir. Öncelikle
-boyutlu sınıfından diferensiyellenebilir bir  manifoldunun
hemen hemen değme yapısı ve
Kenmotsu manifoldların
yapısı
tanıtılmıştır. Daha sonra, Ricci-recurrent, -recurrent,
psedo-projektif
-recurrent,
concircular
-recurrent
Kenmotsu manifoldlarının tanımları verilmiştir ve bu tip manifoldlarda
konformal Ricci solitonlarının hangi durumlarda daralan, genişleyen veya sabit
olduğu şartlar araştırılmıştır.

References

  • Ayar, G., Yıldırım, M., 2019. η-Ricci solitons on nearly Kenmotsu Manifolds, Asian Europan journal of Mathematics, 13(1), 2040002 (8pages).
  • Ayar, G., Yıldırım, M., 2019. Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Unıversitatis (NIS) Ser. Math. Inform.
  • Bagewadi C. S., Prasad, V.S. 1999. Note on Kenmotsu manifolds, Bull. Cal. Math. Soc. 91, 379–384,
  • Basu, N., Bhattacharyyaz A., 2015. Conformal ricci soliton in kenmotsu manifold, Global Journal of Advanced Research on Classical and Modern Geometries, 4(1), 15-21.
  • Blair, D.E., 1976. Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509 (Springer-Verlag, Berlin).
  • Catino, Mastrolia, G. P., Monticelli, D. D., Rigoli, M., 2014. Conformal Ricci Solitons And Related Integrability Conditions, Advances in Geometry , 16 (3).
  • Dutta, T., Basu N., Bhattacharyyaz A., 2016. Almost conformal Ricci solituons on 3-dimensional trans-Sasakian manifold, Hacettepe Journal of Mathematics and Statistics, 45(5), 1379 -1392.
  • Fischer, A. E., 2004. An introduction to conformal Ricci flow, Class, Quantum Grav, 21, S171 - S218,
  • Hamilton, R.S., 1988. The Ricci flow on surfaces, Contemporary Mathematics, 237-261.
  • Kenmotsu, K., 1972. A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, 93-103,
  • Nagaraja, H.G., Premalatha, C.R., 2012. Ricci Solitons In Kenmotsu Manifolds, Journal of Mathematical Analysis, 3(2), 18-24.
  • Nagaraja, H.G., Venu, K., 2016. Ricci Solitons in Kenmotsu Manifold, Journal of Informatics and Mathematical Sciences, 8(1), 29–36.
  • Sıddıqı, M. D., 2018. Conformal η - Ricci Solitons In Lorentzian Trans Sasakian Manifolds, International Journal of Maps in Mathematics 1(1), 15-34.
  • Sinha B.B. and Sharma, R., 1983. On para-A-Einstein manifolds, Publications De L’Institute Mathematique,Nouvelle Serie., tome 34(48), 211-215.
  • Tripathi, M.M., 2008. Ricci solitons in contact metric manifolds, arXiv:0801,4222v1, [math DG].
  • Yıldırım M., 2019. Kenmotsu manifoldlar üzerinde η- Ricci solitonlar, Gece Akademi, Basımda.
Year 2019, , 635 - 642, 31.12.2019
https://doi.org/10.35414/akufemubid.623574

Abstract

References

  • Ayar, G., Yıldırım, M., 2019. η-Ricci solitons on nearly Kenmotsu Manifolds, Asian Europan journal of Mathematics, 13(1), 2040002 (8pages).
  • Ayar, G., Yıldırım, M., 2019. Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Unıversitatis (NIS) Ser. Math. Inform.
  • Bagewadi C. S., Prasad, V.S. 1999. Note on Kenmotsu manifolds, Bull. Cal. Math. Soc. 91, 379–384,
  • Basu, N., Bhattacharyyaz A., 2015. Conformal ricci soliton in kenmotsu manifold, Global Journal of Advanced Research on Classical and Modern Geometries, 4(1), 15-21.
  • Blair, D.E., 1976. Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509 (Springer-Verlag, Berlin).
  • Catino, Mastrolia, G. P., Monticelli, D. D., Rigoli, M., 2014. Conformal Ricci Solitons And Related Integrability Conditions, Advances in Geometry , 16 (3).
  • Dutta, T., Basu N., Bhattacharyyaz A., 2016. Almost conformal Ricci solituons on 3-dimensional trans-Sasakian manifold, Hacettepe Journal of Mathematics and Statistics, 45(5), 1379 -1392.
  • Fischer, A. E., 2004. An introduction to conformal Ricci flow, Class, Quantum Grav, 21, S171 - S218,
  • Hamilton, R.S., 1988. The Ricci flow on surfaces, Contemporary Mathematics, 237-261.
  • Kenmotsu, K., 1972. A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, 93-103,
  • Nagaraja, H.G., Premalatha, C.R., 2012. Ricci Solitons In Kenmotsu Manifolds, Journal of Mathematical Analysis, 3(2), 18-24.
  • Nagaraja, H.G., Venu, K., 2016. Ricci Solitons in Kenmotsu Manifold, Journal of Informatics and Mathematical Sciences, 8(1), 29–36.
  • Sıddıqı, M. D., 2018. Conformal η - Ricci Solitons In Lorentzian Trans Sasakian Manifolds, International Journal of Maps in Mathematics 1(1), 15-34.
  • Sinha B.B. and Sharma, R., 1983. On para-A-Einstein manifolds, Publications De L’Institute Mathematique,Nouvelle Serie., tome 34(48), 211-215.
  • Tripathi, M.M., 2008. Ricci solitons in contact metric manifolds, arXiv:0801,4222v1, [math DG].
  • Yıldırım M., 2019. Kenmotsu manifoldlar üzerinde η- Ricci solitonlar, Gece Akademi, Basımda.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Gülhan Ayar 0000-0002-1018-4590

Publication Date December 31, 2019
Submission Date September 23, 2019
Published in Issue Year 2019

Cite

APA Ayar, G. (2019). Kenmotsu Manifoldlarda Konformal Ricci Solitonlar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(3), 635-642. https://doi.org/10.35414/akufemubid.623574
AMA Ayar G. Kenmotsu Manifoldlarda Konformal Ricci Solitonlar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2019;19(3):635-642. doi:10.35414/akufemubid.623574
Chicago Ayar, Gülhan. “Kenmotsu Manifoldlarda Konformal Ricci Solitonlar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19, no. 3 (December 2019): 635-42. https://doi.org/10.35414/akufemubid.623574.
EndNote Ayar G (December 1, 2019) Kenmotsu Manifoldlarda Konformal Ricci Solitonlar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 3 635–642.
IEEE G. Ayar, “Kenmotsu Manifoldlarda Konformal Ricci Solitonlar”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 3, pp. 635–642, 2019, doi: 10.35414/akufemubid.623574.
ISNAD Ayar, Gülhan. “Kenmotsu Manifoldlarda Konformal Ricci Solitonlar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19/3 (December 2019), 635-642. https://doi.org/10.35414/akufemubid.623574.
JAMA Ayar G. Kenmotsu Manifoldlarda Konformal Ricci Solitonlar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19:635–642.
MLA Ayar, Gülhan. “Kenmotsu Manifoldlarda Konformal Ricci Solitonlar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 19, no. 3, 2019, pp. 635-42, doi:10.35414/akufemubid.623574.
Vancouver Ayar G. Kenmotsu Manifoldlarda Konformal Ricci Solitonlar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19(3):635-42.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.