Research Article
BibTex RIS Cite

Batum Döngüsünün Zamansal ve Alansal Değişkenliğinin Sayısal Okyanus Modeli ile Belirlenmesi

Year 2020, , 165 - 173, 17.03.2020
https://doi.org/10.35414/akufemubid.627279

Abstract

Doğu Karadeniz’de
bulunan Batum döngüsü oldukça dinamik ve değişken bir yapıdadır. Zamansal ve
mekânsal olarak değişikliklerin tespit edilmesi için yüksek çözünürlüklü (1.5km
x 1.5km) 3 boyutlu bir okyanus modeli kullanılarak Karadeniz üzerinde bulunan
tüm döngüler belirlenmiştir. Özellikle 30 km ve daha büyük çaptaki döngülerin
detaylı analizi yapılarak Batum döngüsünün zamansal ve mekânsal olarak nasıl
değişiklik geçirdiği belirlenmiştir. Batum döngüsü Rim Akıntısı dengesizlikleri
sonucu özellikle bahar mevsimi başında ya da ortasında oluşur ve sonbahara
kadar Doğu Karadeniz’de varlığını sürdürür. Yaz boyu Rim Akıntısının kıyı
sularını zorlayarak üretimine sebep olduğu kıyısal antisiklonlardan bazıları
filamentler oluşturarak Batum döngüsüne karışır ve döngünün zayıfladığı
dönemlerde genişlemesine ve gücünün artmasına sebep olur. Dönemsel olarak Batum
döngüsü yavaş hareketler ile kuzey - kuzey batı yönünde hareketleri sonucu
Kırım kıyılarına doğru küçülerek varlığını kaybeder. Döngü varlığını yaklaşık 4
ay sürdürür ve 1 km/gün’den daha yavaş bir hız ile hareket eder. Döngünün
içerisinde kalan pasif taşınabilir maddelerin büyük bir çoğunluğunun bu 4 aylık
sürede döngünün etkisinden kurtulması mümkün olmamaktadır.

Supporting Institution

İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

39408

Thanks

Bu çalışmanın üretildiği proje İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri birimi tarafından 39408 numaralı proje olarak desteklenmiştir.

References

  • Becker, J.J., Sandwell, D.T., Smith, W.H.F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.H. and Ladner, R., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355-371.
  • Budgell, W.P., 2005. Numerical simulation of ice-ocean variability in the Barents Sea region. Ocean Dynamics, 55(3-4), 370-387.
  • Callendar, W., Klymak, J.M. and Foreman, M.G.G., 2011. Tidal generation of large sub-mesoscale eddy dipoles. Ocean Science, 7(4), 487.
  • Capet, X., McWilliams, J.C., Molemaker, M.J. and Shchepetkin, A.F., 2008. Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. Journal of physical oceanography, 38(1), 29-43.
  • Chelton, D.B., Schlax, M.G. and Samelson, R.M., 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2), 167-216.
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, D.P. and Bechtold, P., 2011. The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597.
  • Di Lorenzo, E., 2003. Seasonal dynamics of the surface circulation in the Southern California Current System. Deep Sea Research Part II: Topical Studies in Oceanography, 50(14-16), 2371-2388.
  • Dinniman, M.S., Klinck, J.M. and Smith Jr, W.O., 2003. Cross-shelf exchange in a model of the Ross Sea circulation and biogeochemistry. Deep Sea Research Part II: Topical Studies in Oceanography, 50(22-26), 3103-3120.
  • Döös, K., Jönsson, B. and Kjellsson, J., 2017. Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6. 0. Geoscientific Model Development, 10(4), 1733-1749.
  • Enriquez, C.E., Shapiro, G.I., Souza, A.J. and Zatsepin, A.G., 2005. Hydrodynamic modelling of mesoscale eddies in the Black Sea. Ocean Dynamics, 55(5-6), 476-489.
  • Fichaut, M., Garcia, M.J., Giorgetti, A., Iona, A., Kuznetsov, A., Rixen, M. and Group, M., 2003. MEDAR/MEDATLAS 2002: A Mediterranean and Black Sea database for operational oceanography. In Elsevier Oceanography Series, 69, 645-648.
  • Haidvogel, D.B., Arango, H.G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P. and Shchepetkin, A.F., 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynamics of atmospheres and oceans, 32(3-4), 239-281.
  • Huthnance, J.M., 1995. Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge. Progress in Oceanography, 35(4), 353-431.
  • Kubryakov, A.A. and Stanichny, S.V., 2015. Dynamics of Batumi anticyclone from the satellite measurements. Physical Oceanography, 2, 59-68
  • Kubryakov, A.A., Bagaev, A.V., Stanichny, S.V. and Belokopytov, V.N., 2018. Thermohaline structure, transport and evolution of the Black Sea eddies from hydrological and satellite data. Progress in oceanography, 167, 44-63.
  • Marchesiello, P., McWilliams, J.C. and Shchepetkin, A., 2003. Equilibrium structure and dynamics of the California Current System. Journal of physical Oceanography, 33(4), 753-783.
  • Oguz, T., Latun, V.S., Latif, M.A., Vladimirov, V.V., Sur, H.I., Markov, A.A., Özsoy, E., Kotovshchikov, B.B., Eremeev, V.V. and Ünlüata, Ü., 1993. Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 40(8), 1597-1612.
  • Oguz, T., Aubrey, D.G., Latun, V.S., Demirov, E., Koveshnikov, L., Sur, H.I., Diaconu, V., Besiktepe, S., Duman, M., Limeburner, R. and Eremeev, V., 1994. Mesoscale circulation and thermohaline structure of the Black Sea observed during HydroBlack'91. Deep Sea Research Part I: Oceanographic Research Papers, 41(4), 603-628.
  • Özsoy, E. and Ünlüata, Ü., 1997. Oceanography of the Black Sea: a review of some recent results. Earth-Science Reviews, 42(4), 231-272.
  • Peliz, Á., Dubert, J. and Haidvogel, D.B., 2003. Subinertial response of a density-driven eastern boundary poleward current to wind forcing. Journal of Physical Oceanography, 33(8), 1633-1650.
  • SeaDataNet, 2015. Black Sea - Temperature and salinity observation collection V2. https://doi.org/10.12770/227e9f7b-ddfc-4004-b0e5-f4785d36d43fShapiro, G. I., 2009. Black Sea Circulation. Steele, J.H. (ed). Encyclopedia of Ocean Sciences, 401–414.
  • Staneva, J.V., Dietrich, D.E., Stanev, E.V. and Bowman, M.J., 2001. Rim current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation model. Journal of Marine Systems, 31(1-3), 137-157.
  • Thyng, K.M. and Hetland, R.D., 2014. Tracpy: wrapping the Fortran Lagrangian trajectory model TRACMASS. In Proceedings of the 13th Python in Science Conference (SCIPY 2014), 85-90.
  • Vorosmarty, C.J., Fekete, B.M. and Tucker, B.A., 1998. Global river discharge, 1807–1991, V. 1.1 (RivDIS). Data set. Available on-line [http://www. daac. ornl. gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, USA.
  • Warner, J.C., Sherwood, C.R., Arango, H.G. and Signell, R.P., 2005. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling, 8(1-2), 81-113.
  • Warner, J.C., Geyer, W.R. and Lerczak, J.A., 2005. Numerical modeling of an estuary: A comprehensive skill assessment. Journal of Geophysical Research: Oceans, 110(C5), 1-13.
  • Wilkin, J.L., Arango, H.G., Haidvogel, D.B., Lichtenwalner, C.S., Glenn, S.M. and Hedström, K.S., 2005. A regional ocean modeling system for the Long‐term Ecosystem Observatory. Journal of Geophysical Research: Oceans, 110(C6), 1-13.

Identification of the Temporal and Spatial Variability of Batumi Eddy by a Numerical Ocean Model

Year 2020, , 165 - 173, 17.03.2020
https://doi.org/10.35414/akufemubid.627279

Abstract

Batumi eddy has a highly
dynamic and variable structure. All eddies were identified using a three-dimensional
high resolution
(1.5km x 1.5km) numerical ocean model. Especially the temporal and
spatial variation of eddies larger than 30 km were analyzed in detail to
understand how Batumi eddy is changing spatially and temprorally.Batumi eddy is
formed by the instabilities of the Rim current during early-mid spring and
exist until early autumn in the East Black Sea. Some of the anticyclones that
was forced out of the coastal waters by the Rim current turns into filaments to
join with the Batumi eddy increasing the strength and size during when the eddy
becomes weaker and smaller. The Batumi eddy moves moves slowly north -
northwest towards Crimean shore, gets smaller and vanishes. The Batumi eddy
exists for around four months and moves with a speed of less then 1 km /day.
Most of the passive tracers that are released inside the eddy cannot escape the
effect of Batumi eddy during the 4 month life time.

Project Number

39408

References

  • Becker, J.J., Sandwell, D.T., Smith, W.H.F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.H. and Ladner, R., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355-371.
  • Budgell, W.P., 2005. Numerical simulation of ice-ocean variability in the Barents Sea region. Ocean Dynamics, 55(3-4), 370-387.
  • Callendar, W., Klymak, J.M. and Foreman, M.G.G., 2011. Tidal generation of large sub-mesoscale eddy dipoles. Ocean Science, 7(4), 487.
  • Capet, X., McWilliams, J.C., Molemaker, M.J. and Shchepetkin, A.F., 2008. Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. Journal of physical oceanography, 38(1), 29-43.
  • Chelton, D.B., Schlax, M.G. and Samelson, R.M., 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2), 167-216.
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, D.P. and Bechtold, P., 2011. The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597.
  • Di Lorenzo, E., 2003. Seasonal dynamics of the surface circulation in the Southern California Current System. Deep Sea Research Part II: Topical Studies in Oceanography, 50(14-16), 2371-2388.
  • Dinniman, M.S., Klinck, J.M. and Smith Jr, W.O., 2003. Cross-shelf exchange in a model of the Ross Sea circulation and biogeochemistry. Deep Sea Research Part II: Topical Studies in Oceanography, 50(22-26), 3103-3120.
  • Döös, K., Jönsson, B. and Kjellsson, J., 2017. Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6. 0. Geoscientific Model Development, 10(4), 1733-1749.
  • Enriquez, C.E., Shapiro, G.I., Souza, A.J. and Zatsepin, A.G., 2005. Hydrodynamic modelling of mesoscale eddies in the Black Sea. Ocean Dynamics, 55(5-6), 476-489.
  • Fichaut, M., Garcia, M.J., Giorgetti, A., Iona, A., Kuznetsov, A., Rixen, M. and Group, M., 2003. MEDAR/MEDATLAS 2002: A Mediterranean and Black Sea database for operational oceanography. In Elsevier Oceanography Series, 69, 645-648.
  • Haidvogel, D.B., Arango, H.G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P. and Shchepetkin, A.F., 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynamics of atmospheres and oceans, 32(3-4), 239-281.
  • Huthnance, J.M., 1995. Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge. Progress in Oceanography, 35(4), 353-431.
  • Kubryakov, A.A. and Stanichny, S.V., 2015. Dynamics of Batumi anticyclone from the satellite measurements. Physical Oceanography, 2, 59-68
  • Kubryakov, A.A., Bagaev, A.V., Stanichny, S.V. and Belokopytov, V.N., 2018. Thermohaline structure, transport and evolution of the Black Sea eddies from hydrological and satellite data. Progress in oceanography, 167, 44-63.
  • Marchesiello, P., McWilliams, J.C. and Shchepetkin, A., 2003. Equilibrium structure and dynamics of the California Current System. Journal of physical Oceanography, 33(4), 753-783.
  • Oguz, T., Latun, V.S., Latif, M.A., Vladimirov, V.V., Sur, H.I., Markov, A.A., Özsoy, E., Kotovshchikov, B.B., Eremeev, V.V. and Ünlüata, Ü., 1993. Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 40(8), 1597-1612.
  • Oguz, T., Aubrey, D.G., Latun, V.S., Demirov, E., Koveshnikov, L., Sur, H.I., Diaconu, V., Besiktepe, S., Duman, M., Limeburner, R. and Eremeev, V., 1994. Mesoscale circulation and thermohaline structure of the Black Sea observed during HydroBlack'91. Deep Sea Research Part I: Oceanographic Research Papers, 41(4), 603-628.
  • Özsoy, E. and Ünlüata, Ü., 1997. Oceanography of the Black Sea: a review of some recent results. Earth-Science Reviews, 42(4), 231-272.
  • Peliz, Á., Dubert, J. and Haidvogel, D.B., 2003. Subinertial response of a density-driven eastern boundary poleward current to wind forcing. Journal of Physical Oceanography, 33(8), 1633-1650.
  • SeaDataNet, 2015. Black Sea - Temperature and salinity observation collection V2. https://doi.org/10.12770/227e9f7b-ddfc-4004-b0e5-f4785d36d43fShapiro, G. I., 2009. Black Sea Circulation. Steele, J.H. (ed). Encyclopedia of Ocean Sciences, 401–414.
  • Staneva, J.V., Dietrich, D.E., Stanev, E.V. and Bowman, M.J., 2001. Rim current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation model. Journal of Marine Systems, 31(1-3), 137-157.
  • Thyng, K.M. and Hetland, R.D., 2014. Tracpy: wrapping the Fortran Lagrangian trajectory model TRACMASS. In Proceedings of the 13th Python in Science Conference (SCIPY 2014), 85-90.
  • Vorosmarty, C.J., Fekete, B.M. and Tucker, B.A., 1998. Global river discharge, 1807–1991, V. 1.1 (RivDIS). Data set. Available on-line [http://www. daac. ornl. gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, USA.
  • Warner, J.C., Sherwood, C.R., Arango, H.G. and Signell, R.P., 2005. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling, 8(1-2), 81-113.
  • Warner, J.C., Geyer, W.R. and Lerczak, J.A., 2005. Numerical modeling of an estuary: A comprehensive skill assessment. Journal of Geophysical Research: Oceans, 110(C5), 1-13.
  • Wilkin, J.L., Arango, H.G., Haidvogel, D.B., Lichtenwalner, C.S., Glenn, S.M. and Hedström, K.S., 2005. A regional ocean modeling system for the Long‐term Ecosystem Observatory. Journal of Geophysical Research: Oceans, 110(C6), 1-13.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Bilge Tutak 0000-0003-2885-9338

Project Number 39408
Publication Date March 17, 2020
Submission Date September 30, 2019
Published in Issue Year 2020

Cite

APA Tutak, B. (2020). Batum Döngüsünün Zamansal ve Alansal Değişkenliğinin Sayısal Okyanus Modeli ile Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(1), 165-173. https://doi.org/10.35414/akufemubid.627279
AMA Tutak B. Batum Döngüsünün Zamansal ve Alansal Değişkenliğinin Sayısal Okyanus Modeli ile Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2020;20(1):165-173. doi:10.35414/akufemubid.627279
Chicago Tutak, Bilge. “Batum Döngüsünün Zamansal Ve Alansal Değişkenliğinin Sayısal Okyanus Modeli Ile Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, no. 1 (March 2020): 165-73. https://doi.org/10.35414/akufemubid.627279.
EndNote Tutak B (March 1, 2020) Batum Döngüsünün Zamansal ve Alansal Değişkenliğinin Sayısal Okyanus Modeli ile Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 1 165–173.
IEEE B. Tutak, “Batum Döngüsünün Zamansal ve Alansal Değişkenliğinin Sayısal Okyanus Modeli ile Belirlenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, pp. 165–173, 2020, doi: 10.35414/akufemubid.627279.
ISNAD Tutak, Bilge. “Batum Döngüsünün Zamansal Ve Alansal Değişkenliğinin Sayısal Okyanus Modeli Ile Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/1 (March 2020), 165-173. https://doi.org/10.35414/akufemubid.627279.
JAMA Tutak B. Batum Döngüsünün Zamansal ve Alansal Değişkenliğinin Sayısal Okyanus Modeli ile Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:165–173.
MLA Tutak, Bilge. “Batum Döngüsünün Zamansal Ve Alansal Değişkenliğinin Sayısal Okyanus Modeli Ile Belirlenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, 2020, pp. 165-73, doi:10.35414/akufemubid.627279.
Vancouver Tutak B. Batum Döngüsünün Zamansal ve Alansal Değişkenliğinin Sayısal Okyanus Modeli ile Belirlenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(1):165-73.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.