Research Article
BibTex RIS Cite

Frekans Oranı Metodu ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi

Year 2020, , 138 - 154, 17.03.2020
https://doi.org/10.35414/akufemubid.658662

Abstract

Türkiye’de yaygınlık ve sıklık açısından en çok görülen doğal afetler heyelan ve taşkınlardır. Söz konusu etkiler küçük ve orta ölçekli haritalarda araştırılması gereken lokal etkiye sahip olup ekonomik ve sosyal sonuçları açısından tekrarlı olarak incelenmesi gereken afetlerdir. Buna ek olarak Türkiye, bu afetlerin ekonomik ve sosyal sonuçları açısından büyük risk taşımaktadır. Küresel iklim değişimlerinin etkisi şehirleşmiş ya da gelişmeyi bekleyen bölgelerde bilgilerin tekrar tekrar analiz edilmesini zorunlu kılmaktadır. Bu çalışmada, Orta Karadeniz bölgesinde yer alan Vezirköprü İlçesinin hem iklim değişikliğinden etkilenmesi hem de Kuzey Anadolu Fay Zonu’nun içinde olması nedeniyle heyelan duyarlılık haritası üretilmiştir. Çalışmada heyelan duyarlılık haritalarının hazırlanması için istatistik modeller kullanılmıştır. Bu amaçla tümevarım olarak Bayesyen model ve tümdengelim olarak ise Frekans oranı (FR) modeli kullanılmıştır. Temel parametrelerin çözümlenmesinde yükseklik, eğim, bakı, eğrilik (plan ve profil eğriliği), yola, drenaj ağlarına ve faya yakınlık, topografik nemlilik indeksi ve jeoloji kullanılmıştır.
Üretilen duyarlılık haritaları; çok yüksek, yüksek, orta, düşük ve çok düşük derecede duyarlı alanları gösterecek şekilde 5 sınıfa ayrılmıştır. Heyelan envanter haritasında yer alan 68 adet heyelan içinden 21 adeti kontrol amacıyla ayrılmış olup, heyelan duyarlılık haritalarının güvenilirliğini test etmek için üretilen duyarlılık haritaları ile karşılaştırılmıştır. Nihai değerlendirmede kontrol heyelanlarının üretilen haritalar ile FR için %78,2 ve Bayesyen model için %97,1 oranında olduğu görülmüştür.

References

  • Aditian, A., Kubota, T., Shinohara, Y., 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101-111.
  • Akgun, A., 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey, Landslides, 9(1), 93-106.
  • Akgün, A., 2018. Bulanık Uyarlanabilir Rezonans Teorisi (FuzzyART) Yöntemi Kullanılarak Heyelan Duyarlılık Analizi: Tonya (Trabzon) Örneği, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 135-146.
  • Akgün, A., Dag, S., Bulut, F., 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models, Environmental Geology, Volume 54, Number 6, 1127-1143.
  • Akıncı, H., Doğan, S., Kılıçoğlu, C., ve Keçeci, S. B., 2010. Samsun il merkezinin heyelan duyarlılık haritasının üretilmesi, Harita Teknolojileri Elektronik Dergisi, 2(3), 13-27.
  • Akıncı, H., Özalp Yavuz, A., Özalp, M., Temuçin Kılıçer, S., Kılıçoğlu, C., ve Erevan, E., 2014. Bayes olasılık teoremi kullanılarak heyelan duyarlılık haritalarının üretilmesi, 5. Uzaktan Algılama-Cbs Sempozyumu (UZAL-CBS 2014), 14-17 Ekim 2014, İstanbul.
  • Akıncı, H., Özalp, A. Y., Özalp, M., Kılıçer, S. T., Kılıçoğlu, C., and Everan, E., 2015. Production of Landslide Susceptibility Map using Bayesian Probability Model, International Journal of 3-D Information Modeling (IJ3DIM), 4(2), 16-33.
  • Akinci, H., Doğan, S., Kılıçoğlu, C., and Temiz, M. S., 2011. Production of landslide susceptibility map of Samsun (Turkey) City Center by using frequency ratio method, International Journal of Physical Sciences, 6(5), 1015-1025.
  • Alimohammadlou, Y., Asadallah, N., and Yalcin A., 2013. Landslide process and impacts: A proposed classification method, Catena, 104: 219-232.
  • Arabameri, A., Pradhan, B., Rezaei, K., Sohrabi, M., and alantari, Z., 2019. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms, Journal of Mountain Science, 16(3), 595-618.
  • Ayalew, L., Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan, Geomorphology, Volume 65, Issues 1-2, 15–31.
  • Barka, A. A., 1992. The north Anatolian fault zone, In Annales tectonicae (Vol. 6, No. Suppl, pp. 164-195).
  • Bathrellos, G. D., Kalivas, D. P., and Skilodimou, H. D., 2009. GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece, Estud Geol, 65(1), 49-65.
  • Beven, K. J., and Kirkby, M. J., 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrological Sciences Journal, 24(1), 43-69.
  • Bonham-Carter, G. F., 1994. Geographic Information Systems for Geoscientists, Volume 13: Modelling with GIS (Computer Methods in the Geosciences).
  • Bostanci, H.T., Alemdag, S., Gurocak, Z., Gokceoglu, C., 2018. Combination of discontinuity characteristics and GIS for regional assessment of natural rock slopes in a mountainous area (NE Turkey), Catena, 165, 487-502. Caniani, D., Pascale, S., Sdao, F., and Sole, A., 2008. Neural networks and landslide susceptibility: a case study of the urban area of Potenza, Natural Hazards, 45(1), 55-72.
  • Chen, W., Panahi, M., Tsangaratos, P., Shahabi, H., Ilia, I., Panahi, S., and .Ahmad, B. B., 2019. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility, Catena, 172, 212-231.
  • Clerici, A., Perego, S., Tellini, C., and Vescovi, P., 2002. A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology, 48(4), 349-364.
  • Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M.G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., Smith, J.T., 2014. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 73 (2), 209–263.
  • Corsini, A., Cervi, F., and Ronchetti, F., 2009. Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy), Geomorphology, 111(1-2), 79-87).
  • CRED, 2018. 2017-2018. The Centre for Research on the Epidemiology of Disasters (CRED) The UN Office for Disaster Risk Reduction (UNDFRR).
  • Dirik, K., 1991a., Doktora, "Tectono‐Stratigraphy Of The Vezirköprü Area (Samsun‐Turkey)", Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği (Dr) Ocak, 1991.
  • Doğan, B., 2010. Doktora Çalışması Kuzey Anadolu Fay Sistemi Güney Kolunun Geyve Gemlik Arasındaki Kesiminin Morfotektonik,Tektonostratigrafik Ve Paleosismolojik Evrimi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü.
  • Dağ, S., Bulut, F., Alemdağ, S., Kaya, A., 2011. Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanılan Yöntem ve Parametrelere İlişkin Genel Bir Değerlendirme. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1(2), 151-176.
  • de Assis Dias, M. C., Saito, S. M., dos Santos Alvalá, R. C., Stenner, C., Pinho, G., Nobre, C. A., and Lima, C. O., 2018. Estımatıon of Exposed Populatıon to Landslıdes and Floods Rısk Areas In Brazıl, on an Intra-Urban SCALE, International Journal of Disaster Risk Reduction.
  • Dragićević, S., Lai, T., and Balram, S., 2015. GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments, Habitat international, 45, 114-125.
  • Duman, T. Y., Çan, T., Emre, Ö., Kadirioğlu, F. T., Baştürk, N. B., Kılıç, T., and Karakaya, F., 2018. Seismotectonic database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3277-3316.
  • Ekici, O., (2009). İSTATİSTİKTE BAYESYEN VE KLASİK YAKLAŞIMIN KAVRAMSAL FARKLILIKLARI. Balikesir University Journal of Social Sciences Institute, 12(21).
  • Erturaç, M. K., ve Tüysüz, O., 2011. Amasya ve çevresinin depremselliği ve deterministik deprem tehlike analizi, İTÜDERGİSİ/d, 9(3).
  • Ercanoglu, M., Gokceoglu, C., and Van Asch, T., W.2004. Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques, Natural Hazards, 32(1), 1-23.
  • Erener, A., Lacasse, S., 2007. Heyelan Duyarlılık Haritalamasında CBS Kullanımı, Bilgi Sistemleri Kongresi, 30 Ekim–02 Kasım, KTÜ, Trabzon.TMMOB Cografi.
  • Erener, A., Mutlu, A., and Düzgün, H. S., 2016. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM), Engineering geology, 203, 45-55.
  • Erol, G., and Topal, T., 2013. GIS-based microzonation of the Niksar settlement area for the purpose of urban planning (Tokat, Turkey), Environmental earth sciences, 68(7), 2065-2084.
  • Fanos, A. M., and Pradhan, B., 2019. A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS, Catena, 172, 435-450.
  • Fayez, L., Pazhman, D., Pham, B. T., Dholakia, M. B., Solanki, H. A., Khalid, M., and Prakash, I., 2018. Application of Frequency Ratio Model for the Development of Landslide Susceptibility Mapping at Part of Uttarakhand State, India. International Journal of Applied Engineering Research, 13(9), 6846-6854.
  • Fayez, L., Pazhman, D., Pham, B. T., Dholakia, M. B., Solanki, H. A., Khalid, M., and Prakash, I., 2018. Application of Frequency Ratio Model for the Development of Landslide Susceptibility Mapping at Part of Uttarakhand State, India. International Journal of Applied Engineering Research, 13(9), 6846-6854. Feizizadeh, B., Roodposhti, M. S., Jankowski, P., and Blaschke, T., 2014. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping, Computers and geosciences, 73, 208-221.
  • Gokceoglu, C., Sonmez, H., Nefeslioglu, H. A., Duman, T. Y., and Can, T., (2005). The 17 March 2005. Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Engineering geology, 81(1), 65-83.
  • Gokceoglu, C., and Sezer, E., 2009. A statistical assessment on international landslide literature (1945–2008), Landslides, 6(4), 345.
  • Gökçeoğlu, C., ve Ercanoğlu, M., 2001. Heyelan duyarlılık haritalarının hazırlanmasında kullanılan parametrelere ilişkin belirsizlikler, Yerbilimleri Dergisi, 5(23), 189-206.
  • Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A. X., and Chen, W., 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China, Science of the total environment, 625, 575-588.
  • Huang, F., Yao, C., Liu, W., Li, Y., and Liu, X., 2018. Landslide susceptibility assessment in the Nantian area of China: a comparison of frequency ratio model and support vector machine, Geomatics, Natural Hazards and Risk, 9(1), 919-938.
  • Ilia, I., and Tsangaratos, P., 2016. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map, Landslides, 13(2), 379-397.
  • Ilia, I., Koumantakis, I., Rozos, D., Koukis, G., and Tsangaratos, P., 2015. A geographical information system (GIS) based probabilistic certainty factor approach in assessing landslide susceptibility: the case study of Kimi, Euboea, Greece, In Engineering Geology for Society and Territory-Volume 2 (pp. 1199-1204). Springer, Cham.
  • Kadir D., 1994b., Kuzey Anadolu Transform Fay Zonunun Beşpınar-Havza Kesimindeki Neotektonik Özellikleri, MTA Dergisi 116,37 50.
  • Kamp, U., Growley, B. J., Khattak, G. A., and Owen, L. A., 2008. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region, Geomorphology, 101(4), 631-642.
  • Kavzoglu, T., Sahin, E. K., and Colkesen, I., 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression, Landslides, 11(3), 425-439.
  • Kavzoglu, T., Sahin, E. K., and Colkesen, I., 2015. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm, Engineering Geology, 192, 101-112.
  • Ketin İ., 1969. Kuzey Anadolu fayı hakkında, Maden Tetkik ve Arama Dergisi, 72(72).
  • Ko, F. W., and Lo, F. L., 2018. From landslide susceptibility to landslide frequency: A territory-wide study in Hong Kong, Engineering geology, 242, 12-22.
  • Kornejady, A., Ownegh, M., Rahmati, O., and Bahremand, A., 2018. Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND. Geocarto international, 33(11), 1155-1185.
  • Lee, S., 2005. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data, International Journal of Remote Sensing, 26(7), 1477-1491.
  • Lee, S., and Min, K., 2001. Statistical analysis of landslide susceptibility at Yongin, Korea, Environmental geology, 40(9), 1095-1113.
  • Maden Tetkik ve Arama, 2013. 1/1.250.000 Ölçekli Türkiye Diri Fay Haritası, Özel yayın serisi-30.
  • Neuhäuser, B., and Terhorst, B., 2007. Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany), Geomorphology, 86(1-2), 12-24.
  • Önalp, A., ve Arel, E., 2004. Geoteknik Bilgisi II Yamaç ve Şev'lerin Mühendisliği, Birsen yayınevi.
  • Panahi, S., ve Ahmad, B. B., (2019). Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility, Catena, 172, 212-231.
  • Pham, B. T., Bui, D., Prakash, I., and Dholakia, M., 2016. Evaluation of predictive ability of support vector machines and naive Bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GIS. J Geomatics, 10, 71-79.
  • Pourghasemi, H. R., Moradi, H. R., Aghda, S. F., Gokceoglu, C., and Pradhan, B., 2014. GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran), Arabian Journal of Geosciences, 7(5), 1857-1878.
  • Pourghasemi, H. R., and Rahmati, O., 2018. Prediction of the landslide susceptibility: which algorithm, which precision?, Catena, 162, 177-192.
  • Pourghasemi, H. R., Yansari, Z. T., Panagos, P., and Pradhan, B., 2018. Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016), Arabian Journal of Geosciences, 11(9), 193.
  • Rasyid, A. R., Bhandary, N. P., and Yatabe, R., 2016. Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters, 3(1), 19.
  • Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F., 2018. A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60-91.
  • Santacana, N., Baeza, B., Corominas, J., De Paz, A., and Marturiá, J., 2003. A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain), Natural hazards, 30(3), 281-295.
  • Sezer, E. A., Pradhan, B., and Gokceoglu, C., 2011. Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia, Expert Systems with Applications, 38(7), 8208-8219.
  • Süzen, M. L., and Doyuran, V., 2004. A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environmental geology, 45(5), 665-679.
  • Termeh, S. V. R., Kornejady, A., Pourghasemi, H. R., and Keesstra, S., 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms, Science of the Total Environment, 615, 438-451.
  • Uguz F.M., ve Sevin M., 2009. 1/100000 ölçekli Sinop-F34 paftası jeoloji haritası, MTA Gen. Müd. Türkiye Jeoloji Haritaları Serisi, No:116.
  • Van Westen, C. J., Rengers, N., and Soeters, R., 2003. Use of geomorphological information in indirect landslide susceptibility assessment, Natural hazards, 30(3), 399-419.
  • Vijith, H., and Madhu, G., 2008. Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS, Environmental Geology, 55(7), 1397-1405.
  • World Bank Group, 2017. Europe and central asia, country risk profiles for floods and earthquakesworld, The Global facilty for disaster reduction and recovery (GFDRR).
  • Wilson, J. P., and Gallant, J. C., (2000). Digital terrain analysis. Terrain analysis: Principles and applications, 6(12), 1-27.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations, Catena, 72.1 (2008): 1-12.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations, Catena 72.1 (2008): 1-12.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations, Catena, 72(1), 1-12.
  • Yalçın, A., 2007. Heyelan Duyarlılık Haritalarının Üretilmesinde Analitik Hiyerarşi Yönteminin ve CBS’nin Kullanımı, Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 22(3), 1–14.
  • Yan, F., Zhang, Q., Ye, S., and Ren, B., 2019. A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model, Geomorphology, 327, 170-187.
  • Yesilnacar, E., and Topal, T., 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey), Engineering Geology, 79(3-4), 251-266.
  • Vahidnia, M., H. Alesheikh, A. A., Alimohammadi, A., and Hosseinali, F., (2010). A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Computers and Geosciences, 36(9), 1101-1114.
Year 2020, , 138 - 154, 17.03.2020
https://doi.org/10.35414/akufemubid.658662

Abstract

References

  • Aditian, A., Kubota, T., Shinohara, Y., 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101-111.
  • Akgun, A., 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey, Landslides, 9(1), 93-106.
  • Akgün, A., 2018. Bulanık Uyarlanabilir Rezonans Teorisi (FuzzyART) Yöntemi Kullanılarak Heyelan Duyarlılık Analizi: Tonya (Trabzon) Örneği, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 135-146.
  • Akgün, A., Dag, S., Bulut, F., 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models, Environmental Geology, Volume 54, Number 6, 1127-1143.
  • Akıncı, H., Doğan, S., Kılıçoğlu, C., ve Keçeci, S. B., 2010. Samsun il merkezinin heyelan duyarlılık haritasının üretilmesi, Harita Teknolojileri Elektronik Dergisi, 2(3), 13-27.
  • Akıncı, H., Özalp Yavuz, A., Özalp, M., Temuçin Kılıçer, S., Kılıçoğlu, C., ve Erevan, E., 2014. Bayes olasılık teoremi kullanılarak heyelan duyarlılık haritalarının üretilmesi, 5. Uzaktan Algılama-Cbs Sempozyumu (UZAL-CBS 2014), 14-17 Ekim 2014, İstanbul.
  • Akıncı, H., Özalp, A. Y., Özalp, M., Kılıçer, S. T., Kılıçoğlu, C., and Everan, E., 2015. Production of Landslide Susceptibility Map using Bayesian Probability Model, International Journal of 3-D Information Modeling (IJ3DIM), 4(2), 16-33.
  • Akinci, H., Doğan, S., Kılıçoğlu, C., and Temiz, M. S., 2011. Production of landslide susceptibility map of Samsun (Turkey) City Center by using frequency ratio method, International Journal of Physical Sciences, 6(5), 1015-1025.
  • Alimohammadlou, Y., Asadallah, N., and Yalcin A., 2013. Landslide process and impacts: A proposed classification method, Catena, 104: 219-232.
  • Arabameri, A., Pradhan, B., Rezaei, K., Sohrabi, M., and alantari, Z., 2019. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms, Journal of Mountain Science, 16(3), 595-618.
  • Ayalew, L., Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan, Geomorphology, Volume 65, Issues 1-2, 15–31.
  • Barka, A. A., 1992. The north Anatolian fault zone, In Annales tectonicae (Vol. 6, No. Suppl, pp. 164-195).
  • Bathrellos, G. D., Kalivas, D. P., and Skilodimou, H. D., 2009. GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece, Estud Geol, 65(1), 49-65.
  • Beven, K. J., and Kirkby, M. J., 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrological Sciences Journal, 24(1), 43-69.
  • Bonham-Carter, G. F., 1994. Geographic Information Systems for Geoscientists, Volume 13: Modelling with GIS (Computer Methods in the Geosciences).
  • Bostanci, H.T., Alemdag, S., Gurocak, Z., Gokceoglu, C., 2018. Combination of discontinuity characteristics and GIS for regional assessment of natural rock slopes in a mountainous area (NE Turkey), Catena, 165, 487-502. Caniani, D., Pascale, S., Sdao, F., and Sole, A., 2008. Neural networks and landslide susceptibility: a case study of the urban area of Potenza, Natural Hazards, 45(1), 55-72.
  • Chen, W., Panahi, M., Tsangaratos, P., Shahabi, H., Ilia, I., Panahi, S., and .Ahmad, B. B., 2019. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility, Catena, 172, 212-231.
  • Clerici, A., Perego, S., Tellini, C., and Vescovi, P., 2002. A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology, 48(4), 349-364.
  • Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M.G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., Smith, J.T., 2014. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 73 (2), 209–263.
  • Corsini, A., Cervi, F., and Ronchetti, F., 2009. Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy), Geomorphology, 111(1-2), 79-87).
  • CRED, 2018. 2017-2018. The Centre for Research on the Epidemiology of Disasters (CRED) The UN Office for Disaster Risk Reduction (UNDFRR).
  • Dirik, K., 1991a., Doktora, "Tectono‐Stratigraphy Of The Vezirköprü Area (Samsun‐Turkey)", Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği (Dr) Ocak, 1991.
  • Doğan, B., 2010. Doktora Çalışması Kuzey Anadolu Fay Sistemi Güney Kolunun Geyve Gemlik Arasındaki Kesiminin Morfotektonik,Tektonostratigrafik Ve Paleosismolojik Evrimi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü.
  • Dağ, S., Bulut, F., Alemdağ, S., Kaya, A., 2011. Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanılan Yöntem ve Parametrelere İlişkin Genel Bir Değerlendirme. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1(2), 151-176.
  • de Assis Dias, M. C., Saito, S. M., dos Santos Alvalá, R. C., Stenner, C., Pinho, G., Nobre, C. A., and Lima, C. O., 2018. Estımatıon of Exposed Populatıon to Landslıdes and Floods Rısk Areas In Brazıl, on an Intra-Urban SCALE, International Journal of Disaster Risk Reduction.
  • Dragićević, S., Lai, T., and Balram, S., 2015. GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments, Habitat international, 45, 114-125.
  • Duman, T. Y., Çan, T., Emre, Ö., Kadirioğlu, F. T., Baştürk, N. B., Kılıç, T., and Karakaya, F., 2018. Seismotectonic database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3277-3316.
  • Ekici, O., (2009). İSTATİSTİKTE BAYESYEN VE KLASİK YAKLAŞIMIN KAVRAMSAL FARKLILIKLARI. Balikesir University Journal of Social Sciences Institute, 12(21).
  • Erturaç, M. K., ve Tüysüz, O., 2011. Amasya ve çevresinin depremselliği ve deterministik deprem tehlike analizi, İTÜDERGİSİ/d, 9(3).
  • Ercanoglu, M., Gokceoglu, C., and Van Asch, T., W.2004. Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques, Natural Hazards, 32(1), 1-23.
  • Erener, A., Lacasse, S., 2007. Heyelan Duyarlılık Haritalamasında CBS Kullanımı, Bilgi Sistemleri Kongresi, 30 Ekim–02 Kasım, KTÜ, Trabzon.TMMOB Cografi.
  • Erener, A., Mutlu, A., and Düzgün, H. S., 2016. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM), Engineering geology, 203, 45-55.
  • Erol, G., and Topal, T., 2013. GIS-based microzonation of the Niksar settlement area for the purpose of urban planning (Tokat, Turkey), Environmental earth sciences, 68(7), 2065-2084.
  • Fanos, A. M., and Pradhan, B., 2019. A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS, Catena, 172, 435-450.
  • Fayez, L., Pazhman, D., Pham, B. T., Dholakia, M. B., Solanki, H. A., Khalid, M., and Prakash, I., 2018. Application of Frequency Ratio Model for the Development of Landslide Susceptibility Mapping at Part of Uttarakhand State, India. International Journal of Applied Engineering Research, 13(9), 6846-6854.
  • Fayez, L., Pazhman, D., Pham, B. T., Dholakia, M. B., Solanki, H. A., Khalid, M., and Prakash, I., 2018. Application of Frequency Ratio Model for the Development of Landslide Susceptibility Mapping at Part of Uttarakhand State, India. International Journal of Applied Engineering Research, 13(9), 6846-6854. Feizizadeh, B., Roodposhti, M. S., Jankowski, P., and Blaschke, T., 2014. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping, Computers and geosciences, 73, 208-221.
  • Gokceoglu, C., Sonmez, H., Nefeslioglu, H. A., Duman, T. Y., and Can, T., (2005). The 17 March 2005. Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Engineering geology, 81(1), 65-83.
  • Gokceoglu, C., and Sezer, E., 2009. A statistical assessment on international landslide literature (1945–2008), Landslides, 6(4), 345.
  • Gökçeoğlu, C., ve Ercanoğlu, M., 2001. Heyelan duyarlılık haritalarının hazırlanmasında kullanılan parametrelere ilişkin belirsizlikler, Yerbilimleri Dergisi, 5(23), 189-206.
  • Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A. X., and Chen, W., 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China, Science of the total environment, 625, 575-588.
  • Huang, F., Yao, C., Liu, W., Li, Y., and Liu, X., 2018. Landslide susceptibility assessment in the Nantian area of China: a comparison of frequency ratio model and support vector machine, Geomatics, Natural Hazards and Risk, 9(1), 919-938.
  • Ilia, I., and Tsangaratos, P., 2016. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map, Landslides, 13(2), 379-397.
  • Ilia, I., Koumantakis, I., Rozos, D., Koukis, G., and Tsangaratos, P., 2015. A geographical information system (GIS) based probabilistic certainty factor approach in assessing landslide susceptibility: the case study of Kimi, Euboea, Greece, In Engineering Geology for Society and Territory-Volume 2 (pp. 1199-1204). Springer, Cham.
  • Kadir D., 1994b., Kuzey Anadolu Transform Fay Zonunun Beşpınar-Havza Kesimindeki Neotektonik Özellikleri, MTA Dergisi 116,37 50.
  • Kamp, U., Growley, B. J., Khattak, G. A., and Owen, L. A., 2008. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region, Geomorphology, 101(4), 631-642.
  • Kavzoglu, T., Sahin, E. K., and Colkesen, I., 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression, Landslides, 11(3), 425-439.
  • Kavzoglu, T., Sahin, E. K., and Colkesen, I., 2015. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm, Engineering Geology, 192, 101-112.
  • Ketin İ., 1969. Kuzey Anadolu fayı hakkında, Maden Tetkik ve Arama Dergisi, 72(72).
  • Ko, F. W., and Lo, F. L., 2018. From landslide susceptibility to landslide frequency: A territory-wide study in Hong Kong, Engineering geology, 242, 12-22.
  • Kornejady, A., Ownegh, M., Rahmati, O., and Bahremand, A., 2018. Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND. Geocarto international, 33(11), 1155-1185.
  • Lee, S., 2005. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data, International Journal of Remote Sensing, 26(7), 1477-1491.
  • Lee, S., and Min, K., 2001. Statistical analysis of landslide susceptibility at Yongin, Korea, Environmental geology, 40(9), 1095-1113.
  • Maden Tetkik ve Arama, 2013. 1/1.250.000 Ölçekli Türkiye Diri Fay Haritası, Özel yayın serisi-30.
  • Neuhäuser, B., and Terhorst, B., 2007. Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany), Geomorphology, 86(1-2), 12-24.
  • Önalp, A., ve Arel, E., 2004. Geoteknik Bilgisi II Yamaç ve Şev'lerin Mühendisliği, Birsen yayınevi.
  • Panahi, S., ve Ahmad, B. B., (2019). Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility, Catena, 172, 212-231.
  • Pham, B. T., Bui, D., Prakash, I., and Dholakia, M., 2016. Evaluation of predictive ability of support vector machines and naive Bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GIS. J Geomatics, 10, 71-79.
  • Pourghasemi, H. R., Moradi, H. R., Aghda, S. F., Gokceoglu, C., and Pradhan, B., 2014. GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran), Arabian Journal of Geosciences, 7(5), 1857-1878.
  • Pourghasemi, H. R., and Rahmati, O., 2018. Prediction of the landslide susceptibility: which algorithm, which precision?, Catena, 162, 177-192.
  • Pourghasemi, H. R., Yansari, Z. T., Panagos, P., and Pradhan, B., 2018. Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016), Arabian Journal of Geosciences, 11(9), 193.
  • Rasyid, A. R., Bhandary, N. P., and Yatabe, R., 2016. Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters, 3(1), 19.
  • Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F., 2018. A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60-91.
  • Santacana, N., Baeza, B., Corominas, J., De Paz, A., and Marturiá, J., 2003. A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain), Natural hazards, 30(3), 281-295.
  • Sezer, E. A., Pradhan, B., and Gokceoglu, C., 2011. Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia, Expert Systems with Applications, 38(7), 8208-8219.
  • Süzen, M. L., and Doyuran, V., 2004. A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environmental geology, 45(5), 665-679.
  • Termeh, S. V. R., Kornejady, A., Pourghasemi, H. R., and Keesstra, S., 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms, Science of the Total Environment, 615, 438-451.
  • Uguz F.M., ve Sevin M., 2009. 1/100000 ölçekli Sinop-F34 paftası jeoloji haritası, MTA Gen. Müd. Türkiye Jeoloji Haritaları Serisi, No:116.
  • Van Westen, C. J., Rengers, N., and Soeters, R., 2003. Use of geomorphological information in indirect landslide susceptibility assessment, Natural hazards, 30(3), 399-419.
  • Vijith, H., and Madhu, G., 2008. Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS, Environmental Geology, 55(7), 1397-1405.
  • World Bank Group, 2017. Europe and central asia, country risk profiles for floods and earthquakesworld, The Global facilty for disaster reduction and recovery (GFDRR).
  • Wilson, J. P., and Gallant, J. C., (2000). Digital terrain analysis. Terrain analysis: Principles and applications, 6(12), 1-27.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations, Catena, 72.1 (2008): 1-12.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations, Catena 72.1 (2008): 1-12.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations, Catena, 72(1), 1-12.
  • Yalçın, A., 2007. Heyelan Duyarlılık Haritalarının Üretilmesinde Analitik Hiyerarşi Yönteminin ve CBS’nin Kullanımı, Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 22(3), 1–14.
  • Yan, F., Zhang, Q., Ye, S., and Ren, B., 2019. A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model, Geomorphology, 327, 170-187.
  • Yesilnacar, E., and Topal, T., 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey), Engineering Geology, 79(3-4), 251-266.
  • Vahidnia, M., H. Alesheikh, A. A., Alimohammadi, A., and Hosseinali, F., (2010). A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Computers and Geosciences, 36(9), 1101-1114.
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Cem Kılıçoğlu 0000-0003-1905-9486

Publication Date March 17, 2020
Submission Date December 12, 2019
Published in Issue Year 2020

Cite

APA Kılıçoğlu, C. (2020). Frekans Oranı Metodu ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(1), 138-154. https://doi.org/10.35414/akufemubid.658662
AMA Kılıçoğlu C. Frekans Oranı Metodu ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2020;20(1):138-154. doi:10.35414/akufemubid.658662
Chicago Kılıçoğlu, Cem. “Frekans Oranı Metodu Ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, no. 1 (March 2020): 138-54. https://doi.org/10.35414/akufemubid.658662.
EndNote Kılıçoğlu C (March 1, 2020) Frekans Oranı Metodu ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 1 138–154.
IEEE C. Kılıçoğlu, “Frekans Oranı Metodu ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, pp. 138–154, 2020, doi: 10.35414/akufemubid.658662.
ISNAD Kılıçoğlu, Cem. “Frekans Oranı Metodu Ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/1 (March 2020), 138-154. https://doi.org/10.35414/akufemubid.658662.
JAMA Kılıçoğlu C. Frekans Oranı Metodu ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:138–154.
MLA Kılıçoğlu, Cem. “Frekans Oranı Metodu Ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, 2020, pp. 138-54, doi:10.35414/akufemubid.658662.
Vancouver Kılıçoğlu C. Frekans Oranı Metodu ve Bayesyen Olasılık Modeli Kullanılarak Samsun İli Vezirköprü İlçesinin Heyelan Duyarlılık Haritasının Üretilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(1):138-54.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.