Research Article
BibTex RIS Cite

Genetic Variation among Turkish Maize (Zea mays L.) Hybrids for Tolerance to Chilling Stress

Year 2020, , 10 - 18, 17.03.2020
https://doi.org/10.35414/akufemubid.663739

Abstract

Maize (Zea mays L.) is a tropical crop and chilling temperatures (below 15 ºC) cause growth retardation and yield losses. The development of chilling-tolerant maize varieties is a main goal of plant breeders in order to produce maize under cool climates. Hybrids are more vigorous then their parents, including being more tolerant to diverse stresses. However, stress screening is an obstacle. This study aims to evaluate chilling stress tolerance of Turkish maize hybrids and determine suitable indicators for selection of the most tolerant hybrid. Nine hybrids were subjected to low night temperature following germination until the third leaf was fully enlarged. Hybrids were evaluated at morphological, cellular and physiological levels by comparison with control seedlings. The data were analyzed by kinematic analysis and statistical tools. The findings showed that all indicators significantly differed among the hybrids. Indicators such as leaf elongation rate (LER), mature cell length (MCL) and cell production (CP) increase our understanding of stress tolerance by making connections between phenotype and cellular functions. Fresh and dry weight of shoot (SFW and SDW) were observed to be useful indicators to uncover relatedness between growth and the physiological stress response of seedlings. In conclusion, this study defines beneficial indicators for breeding studies at early seedling screening of maize hybrids which are displayed genetic variation for chilling stress tolerance.

Thanks

The authors thank to Dr. Rahime Rana CENGIZ from Turkish Maize Research Institute for providing seeds and helpful conversation about maize hybrid seed breeding.

References

  • Avramova, V., Nagel, A. K., AbdElgawad, H., Bustos, D., DuPlessis, M., Fiorani, F., and Beemster, G.T.S., 2016. Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67(8), 2453-2466. doi:10.1093/jxb/erw055
  • Ben-Haj-Sallah, H., and Tardieu, F., 1995. Temperature affects expansion rate of maize leaves without change in the spatial distribution of cell length. Plant Physiology, 109, 1–9. doi.org/10.1104/pp.109.3.861
  • Bhosale, S. U., Rymen, B, Beemster, G. T. S., Melchinger, A. E., and Reif, J. C., 2007. Chilling tolerance of Central European maize lines and their factorial crosses. Annals of Botany, 100(6), 1315–1321. doi:10.1093/aob/mcm215
  • Cramer, G. R., and Bowman, D. C., 1991. Short-term leaf elongation kinetics of maize in response to salinity are independent of the root. Plant Physiology, 95(3), 965-967. doi:10.1104/pp.95.3.965
  • Durand, J. L., Gastal, F., Etchebest, S., Bonnet, A. C., and Ghesquiere, M., 1997. Interspecific variability of plant water status and leaf morphogenesis in temperate forage grasses under summer water deficit. European Journal of Agronomy, 7, 99–107. doi:10.1016/S1161-0301(97)00021-X
  • Durand, J. L., Schaufele, R., and Francois, G., 1999. Grass leaf elongation rate as a function of developmental stage and temperature: morphological analysis and modelling. Annals of Botany, 83, 577–588. doi:10.1006/anbo.1999.0864 Duvick, D.N., 2001. Biotechnology in the 1930s: the development of hybrid maize. Nature Reviews Genetics, 2(1), 69–74. doi:10.1038/35047587
  • Fiorani, F., Beemster, G. T. S., Bultynck, L., and Lambers, H., 2000. Can meristematic activity determine variation in leaf size and leaf elongation rate between four Poa species? A kinematic study. Plant Physiology, 124(2), 845–856. doi:10.1104/pp.124.2.845
  • Gama, P. B. S., Tanaka, K., Eneji, A. E., Eltayeb, A. E., and El Siddig, K., 2009. Salt-Induced Stress Effects on Biomass. Photosynthetic Rate. and Reactive Oxygen Species-Scavenging Enzyme Accumulation in Common Bean. Journal of Plant Nutrition, 32(5), 837-854. doi:10.1080/01904160902787925
  • Gastal, F., Belanger, G., and Lemaire, G., 1992. A model of leaf extension rate of tall fescue in response to nitrogen and temperature. Annals of Botany, 70, 437-442. doi:10.1093/oxfordjournals.aob.a088500
  • Greer, D. H., Weedon, M. M., and Weston, C., 2011. Reductions in biomass accumulation. photosynthesis in situ and net carbon balance are the costs of protecting Vitis vinifera ‘Semillon’ grapevines from heat stress with shade covering. AoB Plants, 2011, plr023. doi:10.1093/aobpla/plr023
  • Jones, T. L., Tucker, D. E., and Ort, D. R., 1998. Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiology, 118, 149-158. doi:10.1104/pp.118.1.149
  • Kim, S. I., and Tai, T. H., 2011. Evaluation of seedling cold tolerance in rice cultivars: a comparison of visual ratings and quantitative indicators of physiological changes. Euphytica, 178, 437-447. doi:10.1007/s10681-010-0343-4
  • Meng, C., and Sui, N. (2019). Overexpression of maize MYB-IF35 increases chilling tolerance in Arabidopsis. Plant Physiology and Biochemistry, 135, 167-173. doi:10.1016/j.plaphy.2018.11.038
  • Nelissen, H., Sun, X.H., Rymen, B., Jikumaru, Y., Kojima, M., Takebayashi, Y., Abbeloos, R., Demuynck, K., Storme, V., Vuylsteke, M., De Block, J., Herman, D., Coppens, F., Maere, S., Kamiya, Y., Sakakibara, H., Beemster, G. T. S., and Inze, D., 2018. The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. Plant Biotechnology Journal, 16(2), 615-627. doi:10.1111/pbi.12801
  • Neves-Piestun, B. G., and Bernstein, N., 2001. Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity. Plant Physiology, 125(3), 1419-1428.
  • Pahlavanian, A. L., and Silk, W. K., 1988. Effect of temperature on spatial and temporal aspects of growth in the primary maize root. Plant Physiology, 87, 529–532.
  • Petrozza, A., Santaniello, A., Summerer, S., Di Tommaso, G., Di Tommaso, D., Paparelli, E., Piaggesi, A., Perata, P., and Cellini, F., 2014. Physiological responses to Megafol treatments in tomato plants under drought stress: A phenomic and molecular approach. Scientia Horticulturae, 174. doi:10.1016/j.scienta.2014.05.023
  • Riva-Roveda, L., Escale, B., Giauffret, C., and Perilleux, C., 2016. Maize plants can enter a standby mode to cope with chilling stress. BMC Plant Biology, 16(1), 212. doi:10.1186/s12870-016-0909-y
  • Roy, S. J., Tucker, E. J., and Tester, M., 2011. Genetic analysis of abiotic stress tolerance in crops Current Opinion in Plant Biology, 14, 232–239. doi:10.1016/j.pbi.2011.03.002
  • Rymen, B., Fiorani, F., Kartal, F., Vandepoele, K., Inze, D., and Beemster, G. T. S., 2007. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiology, 143(3), 1429-1438. doi:10.1104/pp.106.093948
  • Schneider, C. A., Rasband, W. S., and Eliceiri, K. W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675
  • Takahashi, R., Joshee, N., and Kitagawa, Y., 1994. Induction of chilling resistance by water stress. and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Molecular Biology, 26, 339-352. doi:10.1007/BF00039544
  • Tokuhisa, J., and Browse, J., 1999. Genetic Engineering of Plant Chilling Tolerance. In: J.K. Setlow, (Ed.) Genetic Engineering: Principles and Methods. vol 21. Boston, MA: Springer. doi:10.10071978-1-4615-4707-5
  • Tonkinson, C. L., Lyndon, R. F., Arnold, G. M., and Lenton, J.R., 1997. The effects of temperature and the Rht3 dwarfing gene on growth. cell expansion. and gibberellin content and responsiveness in the wheat leaf. Journal of Experimental Botany 48, 963–970. doi:10.1093/jxb/48.4.963

Türk Mısır (Zea mays L.) Hibridlerinin Üşüme Stresine Karşı Toleranslarında Genetik Varyasyonlar

Year 2020, , 10 - 18, 17.03.2020
https://doi.org/10.35414/akufemubid.663739

Abstract

Mısır (Zea mays L.) tropikal orjinli bir bitkidir ve düşük sıcaklıklar (15 ᵒC'nin altında) büyüme inhibisyonuna yol açarak verim kayıplarına neden olur. Bu nedenle, üşüme stresine dayanıklı mısır çeşitlerinin geliştirilmesi, serin iklimlerde mısır yetiştirebilmek için mısır ıslahçılarının temel amaçları arasındadır. Hibridler, çeşitli streslere daha toleranslı olduklarından ebeveynlerine göre üstündür. Ancak, stres taramasının yapılması zordur. Bu bağlamda, çalışma, Türk mısır hibritlerinin üşüme stres toleranslarını değerlendirmeyi ve en toleranslı hibrit seçiminde uygun belirteçleri belirlemeyi amaçlamaktadır. Bu doğrultuda dokuz farklı genotipe sahip mısır hibridi, çimlenmelerinin ardından üçüncü yaprakları tamamen olgunlaşıncaya kadar düşük gece sıcaklığına maruz bırakılmıştır. Üşümeye maruz bırakılan hibridler, kontrol şartlarında yetiştirilen fideler ile karşılaştırılarak stres toleransları morfolojik, hücresel ve fizyolojik seviyelerde değerlendirilmiştir. Veriler kinematik analiz ve istatistiksel araçlar ile analiz edilmiştir. Bulgulara göre, tüm stres belirteçleri hibridler arasında önemli derecede farklılık göstermiştir. Yaprak uzama oranı (LER), olgun hücre uzunluğu (MCL) ve hücre üretimi (CP) gibi belirteçler, fenotip ve hücresel fonksiyonlar arasında bağlantı kurmaya olanak sağladığından stres tolerans mekanizmasını anlamamızda faydalı olduğu görülmüştür. Bununla birlikte, taze ve kuru fide ağırlığının (SFW ve SDW) fidelerin büyüme ile fizyolojik stres tepkisi arasındaki ilişkiyi ortaya çıkarmak için yararlı göstergeler olduğu saptanmıştır. Sonuç olarak, bu çalışma, genetik varyasyon sergilediği gözlenen üşüme stresi toleransı geliştirmeyi amaçlayan ıslah çalışmalarında mısırın erken aşamada taranmasına olanak sağlayan bir yaklaşım sunmaktadır.

References

  • Avramova, V., Nagel, A. K., AbdElgawad, H., Bustos, D., DuPlessis, M., Fiorani, F., and Beemster, G.T.S., 2016. Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67(8), 2453-2466. doi:10.1093/jxb/erw055
  • Ben-Haj-Sallah, H., and Tardieu, F., 1995. Temperature affects expansion rate of maize leaves without change in the spatial distribution of cell length. Plant Physiology, 109, 1–9. doi.org/10.1104/pp.109.3.861
  • Bhosale, S. U., Rymen, B, Beemster, G. T. S., Melchinger, A. E., and Reif, J. C., 2007. Chilling tolerance of Central European maize lines and their factorial crosses. Annals of Botany, 100(6), 1315–1321. doi:10.1093/aob/mcm215
  • Cramer, G. R., and Bowman, D. C., 1991. Short-term leaf elongation kinetics of maize in response to salinity are independent of the root. Plant Physiology, 95(3), 965-967. doi:10.1104/pp.95.3.965
  • Durand, J. L., Gastal, F., Etchebest, S., Bonnet, A. C., and Ghesquiere, M., 1997. Interspecific variability of plant water status and leaf morphogenesis in temperate forage grasses under summer water deficit. European Journal of Agronomy, 7, 99–107. doi:10.1016/S1161-0301(97)00021-X
  • Durand, J. L., Schaufele, R., and Francois, G., 1999. Grass leaf elongation rate as a function of developmental stage and temperature: morphological analysis and modelling. Annals of Botany, 83, 577–588. doi:10.1006/anbo.1999.0864 Duvick, D.N., 2001. Biotechnology in the 1930s: the development of hybrid maize. Nature Reviews Genetics, 2(1), 69–74. doi:10.1038/35047587
  • Fiorani, F., Beemster, G. T. S., Bultynck, L., and Lambers, H., 2000. Can meristematic activity determine variation in leaf size and leaf elongation rate between four Poa species? A kinematic study. Plant Physiology, 124(2), 845–856. doi:10.1104/pp.124.2.845
  • Gama, P. B. S., Tanaka, K., Eneji, A. E., Eltayeb, A. E., and El Siddig, K., 2009. Salt-Induced Stress Effects on Biomass. Photosynthetic Rate. and Reactive Oxygen Species-Scavenging Enzyme Accumulation in Common Bean. Journal of Plant Nutrition, 32(5), 837-854. doi:10.1080/01904160902787925
  • Gastal, F., Belanger, G., and Lemaire, G., 1992. A model of leaf extension rate of tall fescue in response to nitrogen and temperature. Annals of Botany, 70, 437-442. doi:10.1093/oxfordjournals.aob.a088500
  • Greer, D. H., Weedon, M. M., and Weston, C., 2011. Reductions in biomass accumulation. photosynthesis in situ and net carbon balance are the costs of protecting Vitis vinifera ‘Semillon’ grapevines from heat stress with shade covering. AoB Plants, 2011, plr023. doi:10.1093/aobpla/plr023
  • Jones, T. L., Tucker, D. E., and Ort, D. R., 1998. Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiology, 118, 149-158. doi:10.1104/pp.118.1.149
  • Kim, S. I., and Tai, T. H., 2011. Evaluation of seedling cold tolerance in rice cultivars: a comparison of visual ratings and quantitative indicators of physiological changes. Euphytica, 178, 437-447. doi:10.1007/s10681-010-0343-4
  • Meng, C., and Sui, N. (2019). Overexpression of maize MYB-IF35 increases chilling tolerance in Arabidopsis. Plant Physiology and Biochemistry, 135, 167-173. doi:10.1016/j.plaphy.2018.11.038
  • Nelissen, H., Sun, X.H., Rymen, B., Jikumaru, Y., Kojima, M., Takebayashi, Y., Abbeloos, R., Demuynck, K., Storme, V., Vuylsteke, M., De Block, J., Herman, D., Coppens, F., Maere, S., Kamiya, Y., Sakakibara, H., Beemster, G. T. S., and Inze, D., 2018. The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. Plant Biotechnology Journal, 16(2), 615-627. doi:10.1111/pbi.12801
  • Neves-Piestun, B. G., and Bernstein, N., 2001. Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity. Plant Physiology, 125(3), 1419-1428.
  • Pahlavanian, A. L., and Silk, W. K., 1988. Effect of temperature on spatial and temporal aspects of growth in the primary maize root. Plant Physiology, 87, 529–532.
  • Petrozza, A., Santaniello, A., Summerer, S., Di Tommaso, G., Di Tommaso, D., Paparelli, E., Piaggesi, A., Perata, P., and Cellini, F., 2014. Physiological responses to Megafol treatments in tomato plants under drought stress: A phenomic and molecular approach. Scientia Horticulturae, 174. doi:10.1016/j.scienta.2014.05.023
  • Riva-Roveda, L., Escale, B., Giauffret, C., and Perilleux, C., 2016. Maize plants can enter a standby mode to cope with chilling stress. BMC Plant Biology, 16(1), 212. doi:10.1186/s12870-016-0909-y
  • Roy, S. J., Tucker, E. J., and Tester, M., 2011. Genetic analysis of abiotic stress tolerance in crops Current Opinion in Plant Biology, 14, 232–239. doi:10.1016/j.pbi.2011.03.002
  • Rymen, B., Fiorani, F., Kartal, F., Vandepoele, K., Inze, D., and Beemster, G. T. S., 2007. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiology, 143(3), 1429-1438. doi:10.1104/pp.106.093948
  • Schneider, C. A., Rasband, W. S., and Eliceiri, K. W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675
  • Takahashi, R., Joshee, N., and Kitagawa, Y., 1994. Induction of chilling resistance by water stress. and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Molecular Biology, 26, 339-352. doi:10.1007/BF00039544
  • Tokuhisa, J., and Browse, J., 1999. Genetic Engineering of Plant Chilling Tolerance. In: J.K. Setlow, (Ed.) Genetic Engineering: Principles and Methods. vol 21. Boston, MA: Springer. doi:10.10071978-1-4615-4707-5
  • Tonkinson, C. L., Lyndon, R. F., Arnold, G. M., and Lenton, J.R., 1997. The effects of temperature and the Rht3 dwarfing gene on growth. cell expansion. and gibberellin content and responsiveness in the wheat leaf. Journal of Experimental Botany 48, 963–970. doi:10.1093/jxb/48.4.963
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fatma Aydinoglu 0000-0002-9974-045X

Ömer İltaş 0000-0003-4614-6673

Publication Date March 17, 2020
Submission Date December 23, 2019
Published in Issue Year 2020

Cite

APA Aydinoglu, F., & İltaş, Ö. (2020). Genetic Variation among Turkish Maize (Zea mays L.) Hybrids for Tolerance to Chilling Stress. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(1), 10-18. https://doi.org/10.35414/akufemubid.663739
AMA Aydinoglu F, İltaş Ö. Genetic Variation among Turkish Maize (Zea mays L.) Hybrids for Tolerance to Chilling Stress. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2020;20(1):10-18. doi:10.35414/akufemubid.663739
Chicago Aydinoglu, Fatma, and Ömer İltaş. “Genetic Variation Among Turkish Maize (Zea Mays L.) Hybrids for Tolerance to Chilling Stress”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, no. 1 (March 2020): 10-18. https://doi.org/10.35414/akufemubid.663739.
EndNote Aydinoglu F, İltaş Ö (March 1, 2020) Genetic Variation among Turkish Maize (Zea mays L.) Hybrids for Tolerance to Chilling Stress. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 1 10–18.
IEEE F. Aydinoglu and Ö. İltaş, “Genetic Variation among Turkish Maize (Zea mays L.) Hybrids for Tolerance to Chilling Stress”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, pp. 10–18, 2020, doi: 10.35414/akufemubid.663739.
ISNAD Aydinoglu, Fatma - İltaş, Ömer. “Genetic Variation Among Turkish Maize (Zea Mays L.) Hybrids for Tolerance to Chilling Stress”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/1 (March 2020), 10-18. https://doi.org/10.35414/akufemubid.663739.
JAMA Aydinoglu F, İltaş Ö. Genetic Variation among Turkish Maize (Zea mays L.) Hybrids for Tolerance to Chilling Stress. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:10–18.
MLA Aydinoglu, Fatma and Ömer İltaş. “Genetic Variation Among Turkish Maize (Zea Mays L.) Hybrids for Tolerance to Chilling Stress”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, 2020, pp. 10-18, doi:10.35414/akufemubid.663739.
Vancouver Aydinoglu F, İltaş Ö. Genetic Variation among Turkish Maize (Zea mays L.) Hybrids for Tolerance to Chilling Stress. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(1):10-8.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.