Research Article
BibTex RIS Cite

Development of Efflorescence Control Methods of Fly Ash Based Foam Geopolymers

Year 2020, , 129 - 137, 17.03.2020
https://doi.org/10.35414/akufemubid.667647

Abstract

Since the environmental impacts of carbon emissions due to the cement production have started to be discussed, an alternative material has been sought. Geopolymers are new generation materials which are good candidates to be used instead of cement in the building. Within the scope of geopolymer technology, the reuse of waste materials such as fly ash and blast furnace slag enable reuse of both the reduction of waste stock and the production of new generation material which excites the scientific world. However, various problems that has been focused on prevent the advancement of this technology. Efflorescence is an important problem in the development of geopolymer technology. White residues formed on the surfaces of the materials produced from geopolymer wetting are referred to as efflorescence. Although it may seem like a visual problem in the initial stage, it may cause structural problems in later stages. Therefore, it is an issue that needs to be addressed. In this study, studies were made to prevent or minimize this problem.

Supporting Institution

Afyon Kocatepe Üniversitesi

Project Number

19.Fen.Bil.01 BAP

References

  • Allahverdi, A., E. Najafi Kani, K. M.A. Hossain, and M. Lachemi. 2014. Methods to Control Efflorescence in Alkali-Activated Cement-Based Materials. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing Limited. https://doi.org/10.1533/9781782422884.3.463.
  • Damtoft, J.S., J. Lukasik, D. Herfort, D. Sorrentino, and E.M. Gartner. 2008. “Sustainable Development and Climate Change Initiatives.” Cement and Concrete Research 38 (2): 115–27. https://doi.org/10.1016/J.CEMCONRES.2007.09.008.
  • Davidovits, J. 1994. “High-Alkali Cements for 21st Century Concretes.” American Concrete Institute. https://doi.org/10.14359/4523.
  • Davidovits, Joseph. 1994. “Global Warming Impact on the Cement and Aggregates Industries.” World Resource Review 6 (2): 263–78. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6593603. Davidovits, Joseph. 2008. Geopolymer Chemistry and Applications. Saint- uentin: Institut G opolym re.
  • Davidovits, Joseph.2015. False Values on CO2 Emission For Geopolymer Cement/Concrete. Scientific Papers.
  • Deventer, Jannie S.J. Van, John L. Provis, and Peter Duxson. 2012. “Technical and Commercial Progress in the Adoption of Geopolymer Cement.” Minerals Engineering 29 (March): 89–104. https://doi.org/10.1016/J.MINENG.2011.09.009.
  • Dow, C., and F. P. Glasser. 2003. “Calcium Carbonate Efflorescence on Portland Cement and Building Materials.” Cement and Concrete Research 33 (1): 147–54. https://doi.org/10.1016/S0008-8846(02)00937-7.
  • Duxson, P., A. Fernández-Jim nez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S.J. Van Deventer. 2007a. “Geopolymer Technology: The Current State of the Art.” Journal of Materials Science 42 (9): 2917–33. https://doi.org/10.1007/s10853-006-0637-z.
  • Duxson, P., A. Fernández-Jim nez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S.J. Van Deventer. 2007b. “Geopolymer Technology: The Current State of the Art.” Journal of Materials Science 42 (9): 2917–33. https://doi.org/10.1007/s10853-006-0637-z.
  • Gatti, Subhashini, and D S V Prasad. 2017. “A Comparative Study on Compressive Strength of Geo Polymer Concrete Using Partial Replacement of Cement With Ggbs.” International Journal of Recent Trends in Engineering and Research 3 (8): 267–81. https://doi.org/10.23883/ijrter.2017.3414.vfmnf.
  • Kaur, Mandeep, Jaspal Singh, and Manpreet Kaur. 2018. “Microstructure and Strength Development of Fly Ash-Based Geopolymer Mortar: Role of Nano-Metakaolin.” Construction and Building Materials 190: 672–79. https://doi.org/10.1016/j.conbuildmat.2018.09.157.
  • Lecomte, I., C. Henrist, M. Li geois, F. Maseri, A. Rulmont, and R. Cloots. 2006. “(Micro)-Structural Comparison between Geopolymers, Alkali-Activated Slag Cement and Portland Cement.” Journal of the European Ceramic Society 26 (16): 3789–977 https://doi.org/10.1016/j.jeurceramsoc.2005.12.021.
  • Liew, Y. M., I. Khairul Nizar, H. Kamarudin, C. Y. Heah, M. Bnhussain, A. M. Mustafa Al Bakri, C. M. Ruzaidi, and M. Luqman. 2013. “Kaolin-Based Geopolymers with Various NaOH Concentrations.” International Journal of Minerals, Metallurgy, and Materials 20 (3): 313–22. https://doi.org/10.1007/s12613-013-0729-0.
  • McLellan, Benjamin C., Ross P. Williams, Janine Lay, Arie van Riessen, and Glen D. Corder. 2011. “Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement.” Journal of Cleaner Production 19 (9–10): 1080–90. https://doi.org/10.1016/j.jclepro.2011.02.010.
  • Neupane, Kamal, Des Chalmers, and Paul Kidd. 2018. “High-Strength Geopolymer Concrete- Properties , Advantages and Challenges To Cite This Article :” 7 (2): 15–25. https://doi.org/10.11648/j.am.20180702.11.
  • Škvara, Frantisek, P Svoboda, and Josef Dolezal. 2008. “Geopolymer Concrete-an Ancient Material Too?” Ceramics − Silik{á}ty 52 (4): 296–98. http://ksm.fsv.cvut.cz/%7B~%7Dsmilauer/pdf/Geopolymer%0Aconcrete%0Aancient%7B_%7DSkvara.pdf.
  • Srinivasan, K., and A. Sivakumar. 2013. “Geopolymer Binders: A Need for Future Concrete Construction.” ISRN Polymer Science 2013: 1–8. https://doi.org/10.1155/2013/509185.
  • Subaer. 2004. “Influence of Aggregate on the Microstructure of Geopolymer.” https://espace.curtin.edu.au/handle/20.500.11937/1695.
  • Szklorzová, H., and V. Bílek. 2008. “Influence of Alkali Ions in the Activator on the Performance of Alkali Activated Mortars.” Proceedings of the 3rd International Symposium on Non-Traditional Cement and Concrete, no. 2008: 777–84.
  • Thaarrini, J, and S Dhivya. 2016. “Comparative Study on the Production Cost of Geopolymer and Conventional Concretes.” International Journal of Civil Engineering Research 7 (2): 2278–3652. http://www.ripublication.com.
  • Thakur, Vijay Kumar, Manju Kumari Thakur, and Michael R. Kessler. n.d. Handbook of Composites from Renewable Materials. Volume 3, Physico-Chemical and Mechanical Characterization. Accessed September 18, 2019. cements%2C geocements alkali bonded ceramics and hydroceramics&f=false.
  • Zhang, Zuhua, John L. Provis, Xue Ma, Andrew Reid, and Hao Wang. 2018. “Efflorescence and Subflorescence Induced Microstructural and Mechanical Evolution in Fly Ash-Based Geopolymers.” Cement and Concrete Composites 92 (March): 165–77. https://doi.org/10.1016/j.cemconcomp.2018.06.010.
  • Zhang, Zuhua, Hao Wang, John L Provis, and Andrew Reid. 2013. “Efflorescence : A Critical Challenge for Geopolymer Applications ?” In Concrete Institute of Australia’s Biennial National Conference.

Uçucu Kül Tabanlı Jeopolimerlerin Çiçeklenme Kontrol Yöntemlerinin Geliştirilmesi

Year 2020, , 129 - 137, 17.03.2020
https://doi.org/10.35414/akufemubid.667647

Abstract

Çimento üretiminden kaynaklanan karbon emisyonlarının çevresel etkileri tartışılmaya başlandığından beri, çimentoya alternatif bir malzeme aranmaktadır. Jeopolimerler, binada çimento yerine kullanılmaya uygun yeni nesil malzemelerdir. Jeopolimer teknolojisi kapsamında, uçucu kül ve yüksek fırın cürufu gibi atık malzemelerin yeniden kullanılması, hem atık stokunun azaltılmasını hem de bilim dünyasını heyecanlandıran yeni nesil malzemenin üretimini sağlamaktadır. Fakat çeşitli sorunlar bu teknolojinin ilerlemesini engellemektedir. Çiçeklenme jeopolimer teknolojisinin geliştirilmesinin önünde önemli bir problemdir. Jeopolimerlerin ıslanması sonucu yüzeyleri üzerinde oluşan beyaz kalıntılara çiçeklenme denir. İlk aşamada yalnızca görsel bir sorun gibi görünse de, sonraki aşamalarda yapısal sorunlara neden olabilir. Bu nedenle, ele alınması gereken bir konudur. Bu çalışmada, bu sorunu önlemek veya en aza indirmek için çalışmalar yapılmıştır. Farklı molaritelerde hazırlanan ve farklı sıcaklıklarda kürlenen jeopolimer köpük numunelerin çiçeklenme davranışı incelenmiştir. Yüksek molaritelerde hazırlanan numunelerin ve daha düşük sıcaklıklarda kürlenen numunelerin çiçeklenme problemine daha yatkın olduğu tespit edilmiştir. 

Project Number

19.Fen.Bil.01 BAP

References

  • Allahverdi, A., E. Najafi Kani, K. M.A. Hossain, and M. Lachemi. 2014. Methods to Control Efflorescence in Alkali-Activated Cement-Based Materials. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing Limited. https://doi.org/10.1533/9781782422884.3.463.
  • Damtoft, J.S., J. Lukasik, D. Herfort, D. Sorrentino, and E.M. Gartner. 2008. “Sustainable Development and Climate Change Initiatives.” Cement and Concrete Research 38 (2): 115–27. https://doi.org/10.1016/J.CEMCONRES.2007.09.008.
  • Davidovits, J. 1994. “High-Alkali Cements for 21st Century Concretes.” American Concrete Institute. https://doi.org/10.14359/4523.
  • Davidovits, Joseph. 1994. “Global Warming Impact on the Cement and Aggregates Industries.” World Resource Review 6 (2): 263–78. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6593603. Davidovits, Joseph. 2008. Geopolymer Chemistry and Applications. Saint- uentin: Institut G opolym re.
  • Davidovits, Joseph.2015. False Values on CO2 Emission For Geopolymer Cement/Concrete. Scientific Papers.
  • Deventer, Jannie S.J. Van, John L. Provis, and Peter Duxson. 2012. “Technical and Commercial Progress in the Adoption of Geopolymer Cement.” Minerals Engineering 29 (March): 89–104. https://doi.org/10.1016/J.MINENG.2011.09.009.
  • Dow, C., and F. P. Glasser. 2003. “Calcium Carbonate Efflorescence on Portland Cement and Building Materials.” Cement and Concrete Research 33 (1): 147–54. https://doi.org/10.1016/S0008-8846(02)00937-7.
  • Duxson, P., A. Fernández-Jim nez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S.J. Van Deventer. 2007a. “Geopolymer Technology: The Current State of the Art.” Journal of Materials Science 42 (9): 2917–33. https://doi.org/10.1007/s10853-006-0637-z.
  • Duxson, P., A. Fernández-Jim nez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S.J. Van Deventer. 2007b. “Geopolymer Technology: The Current State of the Art.” Journal of Materials Science 42 (9): 2917–33. https://doi.org/10.1007/s10853-006-0637-z.
  • Gatti, Subhashini, and D S V Prasad. 2017. “A Comparative Study on Compressive Strength of Geo Polymer Concrete Using Partial Replacement of Cement With Ggbs.” International Journal of Recent Trends in Engineering and Research 3 (8): 267–81. https://doi.org/10.23883/ijrter.2017.3414.vfmnf.
  • Kaur, Mandeep, Jaspal Singh, and Manpreet Kaur. 2018. “Microstructure and Strength Development of Fly Ash-Based Geopolymer Mortar: Role of Nano-Metakaolin.” Construction and Building Materials 190: 672–79. https://doi.org/10.1016/j.conbuildmat.2018.09.157.
  • Lecomte, I., C. Henrist, M. Li geois, F. Maseri, A. Rulmont, and R. Cloots. 2006. “(Micro)-Structural Comparison between Geopolymers, Alkali-Activated Slag Cement and Portland Cement.” Journal of the European Ceramic Society 26 (16): 3789–977 https://doi.org/10.1016/j.jeurceramsoc.2005.12.021.
  • Liew, Y. M., I. Khairul Nizar, H. Kamarudin, C. Y. Heah, M. Bnhussain, A. M. Mustafa Al Bakri, C. M. Ruzaidi, and M. Luqman. 2013. “Kaolin-Based Geopolymers with Various NaOH Concentrations.” International Journal of Minerals, Metallurgy, and Materials 20 (3): 313–22. https://doi.org/10.1007/s12613-013-0729-0.
  • McLellan, Benjamin C., Ross P. Williams, Janine Lay, Arie van Riessen, and Glen D. Corder. 2011. “Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement.” Journal of Cleaner Production 19 (9–10): 1080–90. https://doi.org/10.1016/j.jclepro.2011.02.010.
  • Neupane, Kamal, Des Chalmers, and Paul Kidd. 2018. “High-Strength Geopolymer Concrete- Properties , Advantages and Challenges To Cite This Article :” 7 (2): 15–25. https://doi.org/10.11648/j.am.20180702.11.
  • Škvara, Frantisek, P Svoboda, and Josef Dolezal. 2008. “Geopolymer Concrete-an Ancient Material Too?” Ceramics − Silik{á}ty 52 (4): 296–98. http://ksm.fsv.cvut.cz/%7B~%7Dsmilauer/pdf/Geopolymer%0Aconcrete%0Aancient%7B_%7DSkvara.pdf.
  • Srinivasan, K., and A. Sivakumar. 2013. “Geopolymer Binders: A Need for Future Concrete Construction.” ISRN Polymer Science 2013: 1–8. https://doi.org/10.1155/2013/509185.
  • Subaer. 2004. “Influence of Aggregate on the Microstructure of Geopolymer.” https://espace.curtin.edu.au/handle/20.500.11937/1695.
  • Szklorzová, H., and V. Bílek. 2008. “Influence of Alkali Ions in the Activator on the Performance of Alkali Activated Mortars.” Proceedings of the 3rd International Symposium on Non-Traditional Cement and Concrete, no. 2008: 777–84.
  • Thaarrini, J, and S Dhivya. 2016. “Comparative Study on the Production Cost of Geopolymer and Conventional Concretes.” International Journal of Civil Engineering Research 7 (2): 2278–3652. http://www.ripublication.com.
  • Thakur, Vijay Kumar, Manju Kumari Thakur, and Michael R. Kessler. n.d. Handbook of Composites from Renewable Materials. Volume 3, Physico-Chemical and Mechanical Characterization. Accessed September 18, 2019. cements%2C geocements alkali bonded ceramics and hydroceramics&f=false.
  • Zhang, Zuhua, John L. Provis, Xue Ma, Andrew Reid, and Hao Wang. 2018. “Efflorescence and Subflorescence Induced Microstructural and Mechanical Evolution in Fly Ash-Based Geopolymers.” Cement and Concrete Composites 92 (March): 165–77. https://doi.org/10.1016/j.cemconcomp.2018.06.010.
  • Zhang, Zuhua, Hao Wang, John L Provis, and Andrew Reid. 2013. “Efflorescence : A Critical Challenge for Geopolymer Applications ?” In Concrete Institute of Australia’s Biennial National Conference.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cansu Kurtulus 0000-0002-0758-5844

Mustafa Serhat Başpınar 0000-0003-2086-1935

Project Number 19.Fen.Bil.01 BAP
Publication Date March 17, 2020
Submission Date December 31, 2019
Published in Issue Year 2020

Cite

APA Kurtulus, C., & Başpınar, M. S. (2020). Uçucu Kül Tabanlı Jeopolimerlerin Çiçeklenme Kontrol Yöntemlerinin Geliştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(1), 129-137. https://doi.org/10.35414/akufemubid.667647
AMA Kurtulus C, Başpınar MS. Uçucu Kül Tabanlı Jeopolimerlerin Çiçeklenme Kontrol Yöntemlerinin Geliştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2020;20(1):129-137. doi:10.35414/akufemubid.667647
Chicago Kurtulus, Cansu, and Mustafa Serhat Başpınar. “Uçucu Kül Tabanlı Jeopolimerlerin Çiçeklenme Kontrol Yöntemlerinin Geliştirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, no. 1 (March 2020): 129-37. https://doi.org/10.35414/akufemubid.667647.
EndNote Kurtulus C, Başpınar MS (March 1, 2020) Uçucu Kül Tabanlı Jeopolimerlerin Çiçeklenme Kontrol Yöntemlerinin Geliştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 1 129–137.
IEEE C. Kurtulus and M. S. Başpınar, “Uçucu Kül Tabanlı Jeopolimerlerin Çiçeklenme Kontrol Yöntemlerinin Geliştirilmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, pp. 129–137, 2020, doi: 10.35414/akufemubid.667647.
ISNAD Kurtulus, Cansu - Başpınar, Mustafa Serhat. “Uçucu Kül Tabanlı Jeopolimerlerin Çiçeklenme Kontrol Yöntemlerinin Geliştirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/1 (March 2020), 129-137. https://doi.org/10.35414/akufemubid.667647.
JAMA Kurtulus C, Başpınar MS. Uçucu Kül Tabanlı Jeopolimerlerin Çiçeklenme Kontrol Yöntemlerinin Geliştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:129–137.
MLA Kurtulus, Cansu and Mustafa Serhat Başpınar. “Uçucu Kül Tabanlı Jeopolimerlerin Çiçeklenme Kontrol Yöntemlerinin Geliştirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 1, 2020, pp. 129-37, doi:10.35414/akufemubid.667647.
Vancouver Kurtulus C, Başpınar MS. Uçucu Kül Tabanlı Jeopolimerlerin Çiçeklenme Kontrol Yöntemlerinin Geliştirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(1):129-37.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.