Research Article
BibTex RIS Cite

An Analytical Study on Tsunami Run-up due to Submarine Landslides from Different Bottom Profiles

Year 2021, , 426 - 433, 30.04.2021
https://doi.org/10.35414/akufemubid.819348

Abstract

Tsunamis generated by submarine landslides were analyzed through a linear analytical model. Analytical solution existing in the literature was generalized to include different bottom profiles and maximum run-ups originating from two different bottom forcing functions, namely Gaussian wave and solitary wave cross sections were compared. Results indicated that the Gaussian cross section produces slightly larger maximum run-up than the solitary wave cross section, even if the two profiles had the same maximum vertical thickness initially and the area occupied by the former was less than the latter.

References

  • Cecioni, C. and Bellotti, G., 2010. Inclusion of landslide tsunamis generation into a depth integrated wave model. Natural Hazards and Earth System Sciences, 10, 2259–2268.
  • Di Risio, M., Bellotti, G., Panizzo, A. and Girolamo, P. D., 2009. Three-dimensional experiments on landslide generated waves at a sloping coast. Coastal Engineering, 56(5), 659–671.
  • Di Risio, M. and Sammarco, P., 2008. Analytical modeling of landslide-generated waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134, 53–60.
  • Dutykh, D., Mitsotakis, D., Beysel, S. and Shokina, N., 2011. Dispersive waves generated by an underwater landslide. In: Numerical Methods for Hyperbolic Equations Theory and Applications, University of Santiago de Compostela, 245-250.
  • Fritz, H. M., Hager, W. H. and Minor, H.-E., 2004. Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130(6), 287–302.
  • Fuchs, H., Winz, E. and Hager, W. H., 2013. Underwater landslide characteristics from 2D laboratory modeling. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(6), 480–488.
  • Grilli, S. T. and Watts, P., 2005. Tsunami generation by submarine mass failure I: Modeling, experimental validation, and sensitivity analyses. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6), 283–297.
  • Gusiakov, V. K., 2009. Tsunami History: Recorded. In: The Sea, Volume 15: Tsunamis, Harvard University Press, 23-53.
  • Liu, P. L.-F., Lynett, P. and Synolakis, C. E., 2013. Analytical solutions for forced long waves on a sloping beach. Journal of Fluid Mechanics, 478, 101–109.
  • Liu, P. L.-F., Wu, T.-R., Raichlen, F., Synolakis, C. E. and Borrero, J. C., 2005. Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics, 536, 107–144.
  • Lo, H.-Y. and Liu, P. L.-F., 2017. On the analytical solutions for water waves generated by a prescribed landslide. Journal of Fluid Mechanics, 821, 85–116.
  • Lynett, P. and Liu, P. L.-F., 2005. A numerical study of the run-up generated by three-dimensional landslides. Journal of Geophysical Research: Oceans, 110, C03006.
  • Montagna, F., Bellotti, G. and Di Risio, M., 2011. 3D numerical modeling of landslide-generated tsunamis around a conical island. Natural Hazards, 58, 591–608.
  • Özeren, S. and Postacıoğlu, N., 2011. Nonlinear landslide tsunami run-up. Journal of Fluid Mechanics, 691, 440–460.
  • Pelinovsky, E. N., 2003. Analytical models of tsunami generation by submarine landslides. In: Submarine Landslides and Tsunamis, A. C. Yalçıner, E. N. Pelinovsky, E. Okal and C. E. Synolakis (Editors), Kluwer Academic Publishers, 111-128.
  • Perez, G., Garcia-Navarro, P. and Vazquez-Cendon, M. E., 2006. One-dimensional model of shallow water surface waves generated by landslides. Journal of Hydraulic Engineering, 132(5), 462–608.
  • Ramadan, K. T., Omar, M. A. and Allam, A. A., 2014. Modeling of tsunami generation and propagation under the effect of stochastic submarine landslides and slumps spreading in two orthogonal directions. Ocean Engineering, 75, 90–111.
  • Renzi, E. and Sammarco, P., 2010. Landslide tsunamis propagating around a conical island. Journal of Fluid Mechanics, 650, 251–285.
  • Ruffini, G., Heller, V. and Briganti, R., 2019. Numerical modelling of landslide-tsunami propagation in a wide range of idealised water body geometries. Coastal Engineering, 153, 103518.
  • Sammarco, P. and Renzi, E., 2008. Landslide tsunamis propagating along a plane beach. Journal of Fluid Mechanics, 598, 107–119.
  • Tinti, S., Bortolucci, E. and Chiavettieri, C., 2001. Tsunami excitation by submarine slides in shallow-water approximation. Pure and Applied Geophysics, 158, 759–797.
  • Trifunac, M. D., Hayır, A. and Todorovska, M. I., 2003. A note on tsunami caused by submarine slides and slumps spreading in one dimension with nonuniform displacement amplitudes. Soil Dynamics and Earthquake Engineering, 23, 223–234.
  • Tuck, E. O. and Hwang, L. S., 1972. Long wave generation on a sloping beach. Journal of Fluid Mechanics, 51, 449–461.
  • Watts, P., 1998. Wavemaker curves for tsunamis generated by underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(3), 127–137.
  • Watts, P., 2000. Tsunami features of solid block underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(3), 144–152.
  • Watts, P., Grilli, S. T., Tappin, D. R. and Fryer, G. J., 2005. Tsunami generation by submarine mass failure II: Predictive equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6), 298–310.

Farklı Taban Profiline Sahip Denizaltı Heyelanları Sonucu Meydana Gelen Tsunami Tırmanması için Analitik Bir Çalışma

Year 2021, , 426 - 433, 30.04.2021
https://doi.org/10.35414/akufemubid.819348

Abstract

Denizaltı heyelanlarının meydana getirdiği tsunamiler doğrusal bir analitik model aracılığıyla incelenmiştir. Literatürdeki çözüm farklı taban profillerini içerecek şekilde genelleştirilmiş ve kesiti Gauss ve soliter dalga olan taban profilleri sonucu oluşan maksimum tırmanmalar karşılaştırılmıştır. Sonuçlar, başlangıçta aynı kalınlığa sahip olmalarına ve Gauss profilinin kapladığı alanın daha az olmasına rağmen bu profilin oluşturduğu maksimum tırmanmanın daha fazla olduğunu göstermiştir.

References

  • Cecioni, C. and Bellotti, G., 2010. Inclusion of landslide tsunamis generation into a depth integrated wave model. Natural Hazards and Earth System Sciences, 10, 2259–2268.
  • Di Risio, M., Bellotti, G., Panizzo, A. and Girolamo, P. D., 2009. Three-dimensional experiments on landslide generated waves at a sloping coast. Coastal Engineering, 56(5), 659–671.
  • Di Risio, M. and Sammarco, P., 2008. Analytical modeling of landslide-generated waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134, 53–60.
  • Dutykh, D., Mitsotakis, D., Beysel, S. and Shokina, N., 2011. Dispersive waves generated by an underwater landslide. In: Numerical Methods for Hyperbolic Equations Theory and Applications, University of Santiago de Compostela, 245-250.
  • Fritz, H. M., Hager, W. H. and Minor, H.-E., 2004. Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130(6), 287–302.
  • Fuchs, H., Winz, E. and Hager, W. H., 2013. Underwater landslide characteristics from 2D laboratory modeling. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(6), 480–488.
  • Grilli, S. T. and Watts, P., 2005. Tsunami generation by submarine mass failure I: Modeling, experimental validation, and sensitivity analyses. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6), 283–297.
  • Gusiakov, V. K., 2009. Tsunami History: Recorded. In: The Sea, Volume 15: Tsunamis, Harvard University Press, 23-53.
  • Liu, P. L.-F., Lynett, P. and Synolakis, C. E., 2013. Analytical solutions for forced long waves on a sloping beach. Journal of Fluid Mechanics, 478, 101–109.
  • Liu, P. L.-F., Wu, T.-R., Raichlen, F., Synolakis, C. E. and Borrero, J. C., 2005. Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics, 536, 107–144.
  • Lo, H.-Y. and Liu, P. L.-F., 2017. On the analytical solutions for water waves generated by a prescribed landslide. Journal of Fluid Mechanics, 821, 85–116.
  • Lynett, P. and Liu, P. L.-F., 2005. A numerical study of the run-up generated by three-dimensional landslides. Journal of Geophysical Research: Oceans, 110, C03006.
  • Montagna, F., Bellotti, G. and Di Risio, M., 2011. 3D numerical modeling of landslide-generated tsunamis around a conical island. Natural Hazards, 58, 591–608.
  • Özeren, S. and Postacıoğlu, N., 2011. Nonlinear landslide tsunami run-up. Journal of Fluid Mechanics, 691, 440–460.
  • Pelinovsky, E. N., 2003. Analytical models of tsunami generation by submarine landslides. In: Submarine Landslides and Tsunamis, A. C. Yalçıner, E. N. Pelinovsky, E. Okal and C. E. Synolakis (Editors), Kluwer Academic Publishers, 111-128.
  • Perez, G., Garcia-Navarro, P. and Vazquez-Cendon, M. E., 2006. One-dimensional model of shallow water surface waves generated by landslides. Journal of Hydraulic Engineering, 132(5), 462–608.
  • Ramadan, K. T., Omar, M. A. and Allam, A. A., 2014. Modeling of tsunami generation and propagation under the effect of stochastic submarine landslides and slumps spreading in two orthogonal directions. Ocean Engineering, 75, 90–111.
  • Renzi, E. and Sammarco, P., 2010. Landslide tsunamis propagating around a conical island. Journal of Fluid Mechanics, 650, 251–285.
  • Ruffini, G., Heller, V. and Briganti, R., 2019. Numerical modelling of landslide-tsunami propagation in a wide range of idealised water body geometries. Coastal Engineering, 153, 103518.
  • Sammarco, P. and Renzi, E., 2008. Landslide tsunamis propagating along a plane beach. Journal of Fluid Mechanics, 598, 107–119.
  • Tinti, S., Bortolucci, E. and Chiavettieri, C., 2001. Tsunami excitation by submarine slides in shallow-water approximation. Pure and Applied Geophysics, 158, 759–797.
  • Trifunac, M. D., Hayır, A. and Todorovska, M. I., 2003. A note on tsunami caused by submarine slides and slumps spreading in one dimension with nonuniform displacement amplitudes. Soil Dynamics and Earthquake Engineering, 23, 223–234.
  • Tuck, E. O. and Hwang, L. S., 1972. Long wave generation on a sloping beach. Journal of Fluid Mechanics, 51, 449–461.
  • Watts, P., 1998. Wavemaker curves for tsunamis generated by underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(3), 127–137.
  • Watts, P., 2000. Tsunami features of solid block underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(3), 144–152.
  • Watts, P., Grilli, S. T., Tappin, D. R. and Fryer, G. J., 2005. Tsunami generation by submarine mass failure II: Predictive equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6), 298–310.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Baran Aydın 0000-0001-7838-3708

Publication Date April 30, 2021
Submission Date November 2, 2020
Published in Issue Year 2021

Cite

APA Aydın, B. (2021). An Analytical Study on Tsunami Run-up due to Submarine Landslides from Different Bottom Profiles. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(2), 426-433. https://doi.org/10.35414/akufemubid.819348
AMA Aydın B. An Analytical Study on Tsunami Run-up due to Submarine Landslides from Different Bottom Profiles. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2021;21(2):426-433. doi:10.35414/akufemubid.819348
Chicago Aydın, Baran. “An Analytical Study on Tsunami Run-up Due to Submarine Landslides from Different Bottom Profiles”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 2 (April 2021): 426-33. https://doi.org/10.35414/akufemubid.819348.
EndNote Aydın B (April 1, 2021) An Analytical Study on Tsunami Run-up due to Submarine Landslides from Different Bottom Profiles. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 2 426–433.
IEEE B. Aydın, “An Analytical Study on Tsunami Run-up due to Submarine Landslides from Different Bottom Profiles”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 2, pp. 426–433, 2021, doi: 10.35414/akufemubid.819348.
ISNAD Aydın, Baran. “An Analytical Study on Tsunami Run-up Due to Submarine Landslides from Different Bottom Profiles”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/2 (April 2021), 426-433. https://doi.org/10.35414/akufemubid.819348.
JAMA Aydın B. An Analytical Study on Tsunami Run-up due to Submarine Landslides from Different Bottom Profiles. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:426–433.
MLA Aydın, Baran. “An Analytical Study on Tsunami Run-up Due to Submarine Landslides from Different Bottom Profiles”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 2, 2021, pp. 426-33, doi:10.35414/akufemubid.819348.
Vancouver Aydın B. An Analytical Study on Tsunami Run-up due to Submarine Landslides from Different Bottom Profiles. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(2):426-33.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.