Research Article
BibTex RIS Cite

Yüksek Sıcaklık ve Düşük Sıcaklık Su-Gaz Değiştirme Reaktörleri Sistemi ile Hidrojen Üretimi Üzerine Nümerik Çalışma: Çoklu-Ölçekli Modelleme Yaklaşımı ve Simülasyonu

Year 2021, , 1167 - 1180, 31.10.2021
https://doi.org/10.35414/akufemubid.821905

Abstract

Bu çalışmanın temel amacı, hidrojen üretimi için yüksek sıcaklık ve düşük sıcaklık su-gaz değiştirme reaksiyonlarının (WGSR'ler) gerçekleştiği dolgu yataklı reaktörler sisteminin (PBR'ler) gelişmiş ve ayrıntılı çoklu-ölçekli matematiksel modellerini geliştirip, simülasyonlarını gerçekleştirmektir. Endüstriyel hidrojen üretimi için en yaygın kullanılan yöntem yüksek sıcaklık su-gaz değiştirme reaktörünün (HTSR) düşük sıcaklık su-gaz değiştirme reaktörüne (LTSR) aralarında soğutma işlemi olacak şekilde seri halde bağlanmasıyla oluşan sistemdir. Bu nedenle, bu çalışma hidrojen üretim sisteminin davranışını tahmin etmek için seri haldeki HTSR+LTSR sistemi üzerinde ayrıntılı ve gelişmiş nümerik simülasyonların gerçekleştirilmesini amaçlamaktadır. Çalışmada tek kataliz peletinin izotermal olmayan, kararlı durum simülasyonunu tamamladıktan sonra, hibrit çoklu-ölçekli reaktör modeli oluşturmak için izotermal olmayan (adyabatik), kararlı durum dolgu yataklı reaktör modeliyle birleştirilmiştir. Hem reaktör uzunluğu hem de kataliz pelet yarıçapı boyunca hız, sıcaklık ve türlerin konsantrasyon profilleri, konveksiyon, iletim ve reaksiyon-difüzyon gibi sistemde yer alan fiziksel mekanizmaları dikkate alarak titizlikle tanımlanmış momentum, enerji ve taşınım modelleri kullanılarak elde edilmiştir. Model denklemleri her bir çalışma alanı (reaktör gaz fazı alanı ve kataliz pelet alanı) için eş zamanlı olarak çözülmüştür. Maxwell-Stefan Modeli kütle difüzyon akışlarını hesaba katmak için reaktör ölçeğine uygulanırken, Dusty Gaz Modeli de tek kataliz pelet ölçeği için kütle difüzyon akışlarını hesaplama da kullanılmıştır. Bu çalışmada, üst ve alt limit koşullarının sonuçlar üzerindeki etkilerini araştırmak için çok çeşitli çalışma koşullarını ve tasarım parametrelerini içeren simülasyonlar gerçekleştirilmiştir.

References

  • Abdollahi, M., Yu, J., Hwang, H.T., Liu, P.K., Ciora, R., Sahimi, M., Tsotsis, T.T., 2010. Process intensification in hydrogen production from biomass-derived syngas. Industrial & Engineering Chemistry Research, 49, 10986–10993.
  • Adrover, M.E., López, E., Borio, D.O., Pedernera, M.N., 2009. Simulation of a membrane reactor for the WGS reaction: Pressure and thermal effects. Chemical Engineering Journal, 154, 196–202.
  • Chen, W.-H., Lin, M.-R., Jiang, T.L., Chen, M.-H., 2008. Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions. International Journal of Hydrogen Energy, 33, 6644–6656.
  • da Cruz, F.E., Karagöz, S., Manousiouthakis, V.I., 2017. Parametric Studies of Steam Methane Reforming Using a Multiscale Reactor Model. Ind. Eng. Chem. Res., 56, 14123–14139.
  • Ding, O.L., Chan, S.H., 2008. Water–gas shift reaction – A 2-D modeling approach. International Journal of Hydrogen Energy, 33, 4325–4336.
  • Francesconi, J.A., Mussati, M.C., Aguirre, P.A., 2007. Analysis of design variables for water-gas-shift reactors by model-based optimization. Journal of Power Sources, 173, 467–477.
  • Froment, G.F., 1974. Fixed bed catalytic reactors. Technological and fundamental design aspects. Chemie Ingenieur Technik, 46, 374–386.
  • Garshasbi, A., Chen, H., Cao, M., Karagöz, S., Ciora Jr, R.J., Liu, P.K., Manousiouthakis, V.I., Tsotsis, T.T., 2017. Membrane-based reactive separations for process intensification during power generation. Catalysis Today, 331, 18-29.
  • Huang, J., Ho, W.W., 2008. Effects of system parameters on the performance of CO2-selective WGS membrane reactor for fuel cells. Journal of the Chinese Institute of Chemical Engineers, 39, 129–136.
  • Jakobsen, H.A., 2014. Chemical Reactor Modeling: Multiphase Reactive Flows. Springer Science & Business Media.
  • Karagöz, S., Chen, H., Cao, M., Tsotsis, T.T., Manousiouthakis, V.I., 2019a. Multiscale model based design of an energy-intensified novel adsorptive reactor process for the water gas shift reaction. AIChE Journal, 65, e16608.
  • Karagöz, S., Tsotsis, T.T., Manousiouthakis, V.I., 2019b. Multi-scale modeling and simulation of a novel membrane reactor (MR)/adsorptive reactor (AR) process. Chemical Engineering and Processing - Process Intensification, 137, 148–158.
  • Karagöz, S., da Cruz, F.E., Tsotsis, T.T., Manousiouthakis, V.I., 2018. Multi-scale membrane reactor (MR) modeling and simulation for the water gas shift reaction. Chemical Engineering and Processing - Process Intensification, 133, 245–262.
  • Karagöz, S., Tsotsis, T.T., Manousiouthakis, V.I., 2020. Multi-scale model based design of membrane reactor/separator processes for intensified hydrogen production through the water gas shift reaction. International Journal of Hydrogen Energy, Hydrogen separation/purification via membrane technology, 45, 7339–7353.
  • Lim, J.Y., Dennis, J.S., 2012. Modeling reaction and diffusion in a spherical catalyst pellet using multicomponent flux models. Industrial & Engineering Chemistry Research, 51, 15901–15911.
  • Lund, C.R., 2002. Water-gas shift kinetics over iron oxide catalysts at membrane reactor conditions. National Energy Technology Lab., Pittsburgh, PA (US); National Energy Technology Lab., Morgantown, WV (US).
  • Miller, C.T., Christakos, G., Imhoff, P.T., McBride, J.F., Pedit, J.A., Trangenstein, J.A., 1998. Multiphase flow and transport modeling in heterogeneous porous media: challenges and approaches. Advances in Water Resources, 21, 77–120.
  • Natesakhawat, S., Wang, X., Zhang, L., Ozkan, U.S., 2006. Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction. Journal of Molecular Catalysis A: Chemical, 260, 82–94.
  • Rout, K.R., Jakobsen, H.A., 2015. A numerical study of fixed bed reactor modelling for steam methane reforming process. The Canadian Journal of Chemical Engineering, 93, 1222–1238.
  • Seo, Y.-S., Seo, D.-J., Seo, Y.-T., Yoon, W.-L., 2006. Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor. Journal of Power Sources, 161, 1208–1216.
  • Wright, G.T., Edgar, T.F., 1994. Nonlinear model predictive control of a fixed-bed water-gas shift reactor: An experimental study. Computers & Chemical Engineering, An international journal of computer applications in chemical engineering, 18, 83–102.

A Numerical Study of Hydrogen Production via High-temperature and Low-temperature Water-Gas Shift Reactors’ System: The Multi-Scale Modeling Approach and Simulation

Year 2021, , 1167 - 1180, 31.10.2021
https://doi.org/10.35414/akufemubid.821905

Abstract

The primary purpose of this study is to develop an advanced, and comprehensive multi-scale mathematical models of a packed bed reactors (PBRs) carrying out high and low temperature water-gas-shift reactions (WGSRs) for the hydrogen production. In industrial hydrogen generation applications, the water-gas-shift reactors are considered at high (called HTSR) and low (called LTSR) temperature stages with a cooling process between them. Therefore, detailed and advanced numerical studies on the HTSR and the LTSR in series are carried out to assess the overall performance of hydrogen production system. After completing a single-pellet, non-isothermal, steady-state simulation, we couple our model with a non-isothermal (adiabatic), steady-state packed-bed reactor model to form a hybrid multi-scale reactor model. The velocity, temperature and species’ concentration profiles along both the reactor length and the pellet radius are captured by using rigorously defined momentum, energy, and species transport models, accounting for the physical mechanisms involved in the system such as convection, conduction, and reaction-diffusion. The model’s equations are simultaneously solved for each domain: bulk gas domain and catalyst-pellet domain. The rigorous Maxwell-Stefan Model is applied on the reactor scale to account mass diffusion fluxes. On the other hand, Dusty Gas Model is considered to describe mass diffusion fluxes for the single pellet scale. Studies that include a broad range of the operating conditions and design parameters are carried out in this paper, in order to investigate the upper and lower limit conditions’ effects on the results.

References

  • Abdollahi, M., Yu, J., Hwang, H.T., Liu, P.K., Ciora, R., Sahimi, M., Tsotsis, T.T., 2010. Process intensification in hydrogen production from biomass-derived syngas. Industrial & Engineering Chemistry Research, 49, 10986–10993.
  • Adrover, M.E., López, E., Borio, D.O., Pedernera, M.N., 2009. Simulation of a membrane reactor for the WGS reaction: Pressure and thermal effects. Chemical Engineering Journal, 154, 196–202.
  • Chen, W.-H., Lin, M.-R., Jiang, T.L., Chen, M.-H., 2008. Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions. International Journal of Hydrogen Energy, 33, 6644–6656.
  • da Cruz, F.E., Karagöz, S., Manousiouthakis, V.I., 2017. Parametric Studies of Steam Methane Reforming Using a Multiscale Reactor Model. Ind. Eng. Chem. Res., 56, 14123–14139.
  • Ding, O.L., Chan, S.H., 2008. Water–gas shift reaction – A 2-D modeling approach. International Journal of Hydrogen Energy, 33, 4325–4336.
  • Francesconi, J.A., Mussati, M.C., Aguirre, P.A., 2007. Analysis of design variables for water-gas-shift reactors by model-based optimization. Journal of Power Sources, 173, 467–477.
  • Froment, G.F., 1974. Fixed bed catalytic reactors. Technological and fundamental design aspects. Chemie Ingenieur Technik, 46, 374–386.
  • Garshasbi, A., Chen, H., Cao, M., Karagöz, S., Ciora Jr, R.J., Liu, P.K., Manousiouthakis, V.I., Tsotsis, T.T., 2017. Membrane-based reactive separations for process intensification during power generation. Catalysis Today, 331, 18-29.
  • Huang, J., Ho, W.W., 2008. Effects of system parameters on the performance of CO2-selective WGS membrane reactor for fuel cells. Journal of the Chinese Institute of Chemical Engineers, 39, 129–136.
  • Jakobsen, H.A., 2014. Chemical Reactor Modeling: Multiphase Reactive Flows. Springer Science & Business Media.
  • Karagöz, S., Chen, H., Cao, M., Tsotsis, T.T., Manousiouthakis, V.I., 2019a. Multiscale model based design of an energy-intensified novel adsorptive reactor process for the water gas shift reaction. AIChE Journal, 65, e16608.
  • Karagöz, S., Tsotsis, T.T., Manousiouthakis, V.I., 2019b. Multi-scale modeling and simulation of a novel membrane reactor (MR)/adsorptive reactor (AR) process. Chemical Engineering and Processing - Process Intensification, 137, 148–158.
  • Karagöz, S., da Cruz, F.E., Tsotsis, T.T., Manousiouthakis, V.I., 2018. Multi-scale membrane reactor (MR) modeling and simulation for the water gas shift reaction. Chemical Engineering and Processing - Process Intensification, 133, 245–262.
  • Karagöz, S., Tsotsis, T.T., Manousiouthakis, V.I., 2020. Multi-scale model based design of membrane reactor/separator processes for intensified hydrogen production through the water gas shift reaction. International Journal of Hydrogen Energy, Hydrogen separation/purification via membrane technology, 45, 7339–7353.
  • Lim, J.Y., Dennis, J.S., 2012. Modeling reaction and diffusion in a spherical catalyst pellet using multicomponent flux models. Industrial & Engineering Chemistry Research, 51, 15901–15911.
  • Lund, C.R., 2002. Water-gas shift kinetics over iron oxide catalysts at membrane reactor conditions. National Energy Technology Lab., Pittsburgh, PA (US); National Energy Technology Lab., Morgantown, WV (US).
  • Miller, C.T., Christakos, G., Imhoff, P.T., McBride, J.F., Pedit, J.A., Trangenstein, J.A., 1998. Multiphase flow and transport modeling in heterogeneous porous media: challenges and approaches. Advances in Water Resources, 21, 77–120.
  • Natesakhawat, S., Wang, X., Zhang, L., Ozkan, U.S., 2006. Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction. Journal of Molecular Catalysis A: Chemical, 260, 82–94.
  • Rout, K.R., Jakobsen, H.A., 2015. A numerical study of fixed bed reactor modelling for steam methane reforming process. The Canadian Journal of Chemical Engineering, 93, 1222–1238.
  • Seo, Y.-S., Seo, D.-J., Seo, Y.-T., Yoon, W.-L., 2006. Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor. Journal of Power Sources, 161, 1208–1216.
  • Wright, G.T., Edgar, T.F., 1994. Nonlinear model predictive control of a fixed-bed water-gas shift reactor: An experimental study. Computers & Chemical Engineering, An international journal of computer applications in chemical engineering, 18, 83–102.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Seçgin Karagöz 0000-0003-1287-7291

Publication Date October 31, 2021
Submission Date November 5, 2020
Published in Issue Year 2021

Cite

APA Karagöz, S. (2021). A Numerical Study of Hydrogen Production via High-temperature and Low-temperature Water-Gas Shift Reactors’ System: The Multi-Scale Modeling Approach and Simulation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(5), 1167-1180. https://doi.org/10.35414/akufemubid.821905
AMA Karagöz S. A Numerical Study of Hydrogen Production via High-temperature and Low-temperature Water-Gas Shift Reactors’ System: The Multi-Scale Modeling Approach and Simulation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2021;21(5):1167-1180. doi:10.35414/akufemubid.821905
Chicago Karagöz, Seçgin. “A Numerical Study of Hydrogen Production via High-Temperature and Low-Temperature Water-Gas Shift Reactors’ System: The Multi-Scale Modeling Approach and Simulation”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 5 (October 2021): 1167-80. https://doi.org/10.35414/akufemubid.821905.
EndNote Karagöz S (October 1, 2021) A Numerical Study of Hydrogen Production via High-temperature and Low-temperature Water-Gas Shift Reactors’ System: The Multi-Scale Modeling Approach and Simulation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 5 1167–1180.
IEEE S. Karagöz, “A Numerical Study of Hydrogen Production via High-temperature and Low-temperature Water-Gas Shift Reactors’ System: The Multi-Scale Modeling Approach and Simulation”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 5, pp. 1167–1180, 2021, doi: 10.35414/akufemubid.821905.
ISNAD Karagöz, Seçgin. “A Numerical Study of Hydrogen Production via High-Temperature and Low-Temperature Water-Gas Shift Reactors’ System: The Multi-Scale Modeling Approach and Simulation”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/5 (October 2021), 1167-1180. https://doi.org/10.35414/akufemubid.821905.
JAMA Karagöz S. A Numerical Study of Hydrogen Production via High-temperature and Low-temperature Water-Gas Shift Reactors’ System: The Multi-Scale Modeling Approach and Simulation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:1167–1180.
MLA Karagöz, Seçgin. “A Numerical Study of Hydrogen Production via High-Temperature and Low-Temperature Water-Gas Shift Reactors’ System: The Multi-Scale Modeling Approach and Simulation”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 5, 2021, pp. 1167-80, doi:10.35414/akufemubid.821905.
Vancouver Karagöz S. A Numerical Study of Hydrogen Production via High-temperature and Low-temperature Water-Gas Shift Reactors’ System: The Multi-Scale Modeling Approach and Simulation. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(5):1167-80.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.