Research Article
BibTex RIS Cite

Elastin Çözeltilerinin Viskoelastik Karakterizasyonları

Year 2021, , 922 - 926, 31.08.2021
https://doi.org/10.35414/akufemubid.862875

Abstract

Bu çalışmada, izole ağırlıkça %0,1-%3 (w/w) elastin sulu çözeltilerinin viskoelastik karakterizasyonları incelenmiştir. Doğrusal ve doğrusal olmayan viskoelastik testleri reometre kullanılarak gerçekleştirilmiştir. Düşük derişimlerde, Newtonumsu akış özellik gösterirken, özellikle %2, %2,5 ve de %3’ de artan elastik davranışları ile Newtonumsu olmayan viskoleastik akış özellikleri hakim olmaktadır. Bu kapsamda, eşik akış streslerine de yüksek derişimlerde rastlanmaktadır. Frekans aralığı 0.1-10 s-1 de tutulan, elastik modül (G’) ve viskoz modül (G’’) değişimlerinin frekans değişimi ile doğrusal davrandığı gözlenmiştir. Artan derişimlerle, G’ modülün G’’ modülüne göre daha yüksek olduğu tespit edilmiştir. Ayrıca, %3’ lük elastin çözeltisinin dondururak kurutma yöntemi kullanılarak taramalı elektron mikroskopuyla, hidrojel yapılarının oluşumu gözlenmiştir.

Supporting Institution

BAİBÜ

Project Number

2018.09.09.1316

References

  • An B., Kaplan D. L., Brodsky B. 2014 Engineered recombinant bacterial collagen as an alternative collagen-based biomaterial for tissue engineering. Frontiers in Chemistry , 2 (40), 1−5.
  • Chang, D. T., Chai, R., DiMarco, R., Heilshorn, S. C., Cheng, A. G. 2015 Protein-engineered hydrogel encapsulation for 3-D culture of murine cochlea. Otology & Neurotology, 36 (3), 531−538.
  • Cipriani F., Palao B. A., Gonzalez F., Castrillo, V. A., Hernandez J.A., Alonso M., Barcia I.A. A., Sanchez A., Diaz V.G., Pena M.L, and Cabello, J., 2019. An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair, Regenerative Biomaterials, 6, 335-345.
  • Contessotto P., Orbanić D., Da Costa M., Jin C., Owens, P., Chantepie S., Chinello C., Newell J., Magni F., Papy-Garcia D., Karlsson Niclas G., Kilcoyne M., Dockery P., Rodríguez-Cabello J. C., Pandit A. 2021. Elastin-like recombinamers-based hydrogel modulates post-ischemic remodeling in a non-transmural myocar, Science Translational Medicine, 13, 53-80.
  • Fung, Y.-C. 1993. Bioviscoelastic Solids. In Biomechanics; Springer: New York, NY, 1993; 242−320.
  • Kristensen, J.H. Karsdal, M.A. 2016. Biochemistry of Collagens, Laminins and Elastin Structure, Function and Biomarkers, Structure, Function and Biomarkers, Academic Press, New York, 197-201.
  • Miranda-Nieves D., Chaikof L.E., 2017. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues, ACS Biomaterial Science Engineering, 2017, 3,694–711.
  • Mithieux S. M., Weiss A. S., 2005. Elastin. Adv. Protein Chemistry, 70, 437−461.
  • Nuutila K., Peura M., Suomela S., Hukkanen M., Siltanen A., Harjula A., Vuola, J., Kankuri E. 2015. Recombinant human collagen III gel for transplantation of autologous skin cells in porcine full-thickness wounds. Journal of Tissue Engineering Regenerative Medicine, 9, 1386−1393.
  • Otto K. M., 2015. Characterization of Highly Concentrated Elastin-Like Polypeptide Solutions: Rheometric Properties and Phase Separation Analysis, Ms. C. Thesis, Cleveland State University, Ohio, 205.
  • Patterson, C. E.; Gao, J.; Rooney, A. P.; Davis, E. C. 2002. Genomic Organization of Mouse and Human 65 kDa FK506-Binding Protein Genes and Evolution of the FKBP Multigene Family. Genomics , 79, 881−889.
  • Saxena T., Karumbaiah L., Valmikinathan, C. M. 2014. roteins and Poly (Amino Acids), Elsevier Inc.: New York, 187-208.
  • Sugawara-Narutaki A., Yasunaga S., Sugioka Y., and Le H.T., 2019. Rheology of Dispersions of High-Aspect-RatiovNanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides, International of Journal of Molecular Science, 24, 2-12.
  • Tezel G.B., 2017. Low shear rate rheology of Carbopol Solutions using MRI, Material Science: Indian Journal, 15, 121-129.
  • Tezel G., Uzuner, S., Akdemır Evrendılek G. 2019. Structural and Rheological Properties of Gelatin-Carrageenan Mixtures, El-Cezeri Journal of Science and Engineering , 6 , 525-532.
  • Yapıcı K., Cakmak N.K, İlhan N., Uludag Y., 2014. Rheological characterization of polyethylene glycol based TiO2 nanofluids, Korea-Australia Rheology Journal, 26, 355-363.
  • Xu D., Asai D., Chilkoti A., and Craig S.L. 2012. Rheological Properties of Cysteine-Containing Elastin-Like Polypeptide Solutions and Hydrogels, BioMacromolecules, 13, 2315-2321.
  • Wen Q., Mithiex S.M., and Weiss S. A. 2020. Elastin biomaterials in Dermal Repair, Trends in Biotechnology, 38, 280-291.

Viscoelastic Characterizations of Elastin Solutions

Year 2021, , 922 - 926, 31.08.2021
https://doi.org/10.35414/akufemubid.862875

Abstract

In this study, viscoelastic characterizations of isolated 0.1%-3% (w/w) elastin solutions were investigated. Linear and non-linear viscoelastic test were performed by using rheometer. At low concentrations, solutions behaves Newtonian flow, especially for 2%, 2.5%, 3% of elastin solutions have non-Newtonian viscoelastic flow properties. In this context, yield stress are also observed at high concentration values. It is indicated that elastic modulus (G’) and viscous modulus (G’’) change linearly within the frequency range of 0.1- 10 s-1. G’ and G’’ are found to be increased with increased concentration of elastin. In addition, 3% of elastin solutions using freeze dried method were analyzed with scanning electron microscopy, and hydrogelling formations are observed.

Project Number

2018.09.09.1316

References

  • An B., Kaplan D. L., Brodsky B. 2014 Engineered recombinant bacterial collagen as an alternative collagen-based biomaterial for tissue engineering. Frontiers in Chemistry , 2 (40), 1−5.
  • Chang, D. T., Chai, R., DiMarco, R., Heilshorn, S. C., Cheng, A. G. 2015 Protein-engineered hydrogel encapsulation for 3-D culture of murine cochlea. Otology & Neurotology, 36 (3), 531−538.
  • Cipriani F., Palao B. A., Gonzalez F., Castrillo, V. A., Hernandez J.A., Alonso M., Barcia I.A. A., Sanchez A., Diaz V.G., Pena M.L, and Cabello, J., 2019. An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair, Regenerative Biomaterials, 6, 335-345.
  • Contessotto P., Orbanić D., Da Costa M., Jin C., Owens, P., Chantepie S., Chinello C., Newell J., Magni F., Papy-Garcia D., Karlsson Niclas G., Kilcoyne M., Dockery P., Rodríguez-Cabello J. C., Pandit A. 2021. Elastin-like recombinamers-based hydrogel modulates post-ischemic remodeling in a non-transmural myocar, Science Translational Medicine, 13, 53-80.
  • Fung, Y.-C. 1993. Bioviscoelastic Solids. In Biomechanics; Springer: New York, NY, 1993; 242−320.
  • Kristensen, J.H. Karsdal, M.A. 2016. Biochemistry of Collagens, Laminins and Elastin Structure, Function and Biomarkers, Structure, Function and Biomarkers, Academic Press, New York, 197-201.
  • Miranda-Nieves D., Chaikof L.E., 2017. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues, ACS Biomaterial Science Engineering, 2017, 3,694–711.
  • Mithieux S. M., Weiss A. S., 2005. Elastin. Adv. Protein Chemistry, 70, 437−461.
  • Nuutila K., Peura M., Suomela S., Hukkanen M., Siltanen A., Harjula A., Vuola, J., Kankuri E. 2015. Recombinant human collagen III gel for transplantation of autologous skin cells in porcine full-thickness wounds. Journal of Tissue Engineering Regenerative Medicine, 9, 1386−1393.
  • Otto K. M., 2015. Characterization of Highly Concentrated Elastin-Like Polypeptide Solutions: Rheometric Properties and Phase Separation Analysis, Ms. C. Thesis, Cleveland State University, Ohio, 205.
  • Patterson, C. E.; Gao, J.; Rooney, A. P.; Davis, E. C. 2002. Genomic Organization of Mouse and Human 65 kDa FK506-Binding Protein Genes and Evolution of the FKBP Multigene Family. Genomics , 79, 881−889.
  • Saxena T., Karumbaiah L., Valmikinathan, C. M. 2014. roteins and Poly (Amino Acids), Elsevier Inc.: New York, 187-208.
  • Sugawara-Narutaki A., Yasunaga S., Sugioka Y., and Le H.T., 2019. Rheology of Dispersions of High-Aspect-RatiovNanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides, International of Journal of Molecular Science, 24, 2-12.
  • Tezel G.B., 2017. Low shear rate rheology of Carbopol Solutions using MRI, Material Science: Indian Journal, 15, 121-129.
  • Tezel G., Uzuner, S., Akdemır Evrendılek G. 2019. Structural and Rheological Properties of Gelatin-Carrageenan Mixtures, El-Cezeri Journal of Science and Engineering , 6 , 525-532.
  • Yapıcı K., Cakmak N.K, İlhan N., Uludag Y., 2014. Rheological characterization of polyethylene glycol based TiO2 nanofluids, Korea-Australia Rheology Journal, 26, 355-363.
  • Xu D., Asai D., Chilkoti A., and Craig S.L. 2012. Rheological Properties of Cysteine-Containing Elastin-Like Polypeptide Solutions and Hydrogels, BioMacromolecules, 13, 2315-2321.
  • Wen Q., Mithiex S.M., and Weiss S. A. 2020. Elastin biomaterials in Dermal Repair, Trends in Biotechnology, 38, 280-291.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Guler Bengusu Tezel 0000-0002-0671-208X

Project Number 2018.09.09.1316
Publication Date August 31, 2021
Submission Date January 17, 2021
Published in Issue Year 2021

Cite

APA Tezel, G. B. (2021). Elastin Çözeltilerinin Viskoelastik Karakterizasyonları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(4), 922-926. https://doi.org/10.35414/akufemubid.862875
AMA Tezel GB. Elastin Çözeltilerinin Viskoelastik Karakterizasyonları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2021;21(4):922-926. doi:10.35414/akufemubid.862875
Chicago Tezel, Guler Bengusu. “Elastin Çözeltilerinin Viskoelastik Karakterizasyonları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 4 (August 2021): 922-26. https://doi.org/10.35414/akufemubid.862875.
EndNote Tezel GB (August 1, 2021) Elastin Çözeltilerinin Viskoelastik Karakterizasyonları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 4 922–926.
IEEE G. B. Tezel, “Elastin Çözeltilerinin Viskoelastik Karakterizasyonları”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 4, pp. 922–926, 2021, doi: 10.35414/akufemubid.862875.
ISNAD Tezel, Guler Bengusu. “Elastin Çözeltilerinin Viskoelastik Karakterizasyonları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/4 (August 2021), 922-926. https://doi.org/10.35414/akufemubid.862875.
JAMA Tezel GB. Elastin Çözeltilerinin Viskoelastik Karakterizasyonları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:922–926.
MLA Tezel, Guler Bengusu. “Elastin Çözeltilerinin Viskoelastik Karakterizasyonları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 4, 2021, pp. 922-6, doi:10.35414/akufemubid.862875.
Vancouver Tezel GB. Elastin Çözeltilerinin Viskoelastik Karakterizasyonları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(4):922-6.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.