Research Article
BibTex RIS Cite

Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi

Year 2021, , 442 - 448, 30.04.2021
https://doi.org/10.35414/akufemubid.865113

Abstract

Demir (Fe) katkılı la3d yapısındaki kübik büyük mezogözenekli silika KIT-6 sentezi, doğrudan yapı ajanı olan triblok kopolimer Pluronic 123 (P123) ve katkı maddesi olarak da n-butanol kullanılarak hidrotermal sentez yöntemiyle gerçekleştirilmiştir. Fe eklenmesinin KIT-6 nanomateryalinin asitliği üzerindeki etkisi araştırılarak farklı oranlarda Fe (% 5, 10, 20 ve boş) yüklenen malzemeler karşılaştırılmıştır. Fe yüklü KIT-6 katalizörleri N2 adsorpsiyon-desorpsiyon, SEM, TEM, XRD ve FT-IR analizleri ile karakterize edilmişlerdir. Sonuçlar Fe’nin KIT-6 yapısına iyi bir şekilde dahil olduğunu ve gözenek yapısının da korunduğunu göstermiştir. Fe varlığı güçlü asit bölgeleri oluşturduğu için katalitik aktiviteyi de arttırmıştır. Ilıman koşullar altında (oda sıcaklığı, atmosferik basınç) Fe yüklü KIT-6’ların H2O2 bozunma reaksiyonu için etkili, geri dönüştürülebilir ve temiz katalizörler oldukları görülmüştür.

References

  • Carraro, PM., Blanco AAG, Soria FA, Lener G, Sapag K, Eimer GA, 2016. Understanding the role of nickel on the hydrogen storage capacity of Ni/MCM-41 materials. Microporous Mesoporous Mater, 231-319.
  • Dundar-Tekkaya E, Yürüm Y., 2016. Synthesis of palladium incorporated MCM-41 via microwave irradiation and investigation of its hydrogen storage properties. Int J Hydrogen Energy, 41, 9828-33.
  • Fekri, L.Z., Pour K.H., Zeinali, S., 2020. Synthesis, characterization and application of Copper/Schiff-base complex immobilized on KIT-6-NH2 magnetic nanoparticles for the synthesis of dihydropyridines. Journal of Organometallic Chemistry ,915, 121232.
  • Ghohe, N.M, Tayebee, R., Amini, M.M., 2019. Synthesis and characterization of mesoporous Nb-Zr/KIT-6 as a productive catalyst for the synthesis of benzylpyrazolyl coumins, Materials Chemistry and Physics, 223, 268-276.
  • Gopinath, S., Sahaya Murphin Kumar, P., Yasar Arafath, K.A., Thiruvengadaravi, K.V., Sivanesan, S., Baskaralingam, P., 2017. Efficient mesoporous SO4/Zr-KIT-6 solid acid catalyst for green diesel production from esterification of oleic acid, Fuel, 203, 488-500.
  • Gopinath, S., Vinoth Kumar, P., Sahaya Murphin Kumar, P., Yasar Arafath, K.A., Baskaralingam, P., 2018. Cs-tungstosilicic acid/Zr-KIT-6 for esterification of oleic acid and tranesterification of non-edible oils for green diesel production, Fuel, 234, 824-835.
  • He, Q., J. Shi, X. Cui, J. Zhao, Y. Chen, J. Zhou, 2009. Rhodamine B-co-condensed spherical SBA-15 nanoparticles: facile co-condensation synthesis and excellent fluorescence features, J. Mater. Chem. 19, 3395–3403.
  • Huang, X., Ding, J., Zhong, Q. 2015. Catalytic decomposition of H2O2 over Fe-based catalysts for simultaneous removal of Nox and SO2. Applied Surface Science, 326, 66-72.
  • Kishor, A.K. Ghoshal., 2017. Understanding the hydrothermal, thermal, mechanical and hydrolytic stability of mesoporous KIT-6: a comprehensive study, Microporous Mesoporous Mater., 127–135.
  • Li, Z., Luo, G., Chen T., Zeng, Z., Guo, S., Lv, J., Huang, S., Wang, Y., Ma, X., 2020. Bimetallic CoCu catalyst derived from in-situ grown Cu-ZIF-67 encapsulated inside KIT-6 for higher alcohol synthesis from syngas, Fuel, 278, 118292.
  • Liu, X., Wang, C., Zhu, T., 2020. Simultaneous removal of SO2 and Nox with OH from the catalytic decomposition of H2O2 over Fe-Mo mixed oxides. Journal of Hazardaous Mater. Doi:10.1016/j.jhazmat.2020.123936.
  • Luo, H., Cheng Y., Zeng, Y., Luo, K., Pan, X., 2020. Enhanced decomposition of H2O2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants. Science of the Total Environment. 732, 139335.
  • Ma, C., Feng, S., Zhou, J., Chen, R., Wei, Y., Liu, H., Wang, S. 2019. Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue. Applied Catal. B:Environmental, 259, 118015.
  • Pirez, C., J.-M. Caderon, J.-P. Dacquin, A.F. Lee, K. Wilson, 2012. Tunable KIT-6 mesoporous sulfonic acid catalysts for fatty acid esterification, ACS Catal. 2, 1607–1614.
  • Prathap, M.A., Kaur, B., Srivastava, R, 2012. Direct synthesis of metal oxide incorporated mesoporous SBA-15 and their applications in non-enzymatic sensing of glucose. J. Colloid Interface Sci. 381, 143-151.
  • Rivera-Jimenez, S. Mendez-Gonzalez, A. Hernandez-Maldonado, 2010. Metal (M= Co2+, Ni2+, and Cu2+) grafted mesoporous SBA-15: effect of transition metal incorporation and pH conditions on the adsorption of Naproxen from water, Microporous Mesoporous Mater. 132, 470–479.
  • Shen, S., J. Chen, R.T. Koodali, Y. Hu, Q. Xiao, J. Zhou, X. Wang, L. Guo, 2014. Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production, Appl. Catal., B, 150, 138–146.
  • Tuysuz, H., C.W. Lehmann, H. Bongard, B. Tesche, R. Schmidt, F. Schuth, 2018. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM- 41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy, J. Am. Chem. Soc. 130, 11510–11517.
  • Voitko, K., Toth, A., Deminanenko, E., 2015. Catalytic performance of carbon nanotubes in H2O2 decomposition:Experimental and quantum chemical study. Journal of Colloidal and Interface Science, 437, 283-290.
  • Wang, W., R. Qi, W. Shan, X. Wang, Q. Jia, J. Zhao, C. Zhang, H. Ru., 2014. Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process, Microporous Mesoporous Mater., 194, 167–173.
  • Wang, X., Li, D., Nan, Z., 2019. Effect of N content in g-C3N4 as metal free cataltsts on H2O2 decomposition for MB degradation. Separation and Purification Tech. 224, 152-162.
  • Wassel, M.A., El-Tabl, A.S., Elzaref, A.S., 2015. Study of some parameters on the rate of the catalyzed decomposition of hydrogen peroxide by complex. Internatioanl J. Of Science and Research, doi:10.21275/29061705.
  • Xu, J., Hong, Y., Cheng, M-J., Xue, B., Li Y-X., 2019. Vanadyl acetylacetonate grafted on ordered mesoporous silica KIT-6 and its enhanced catalytic performance for direct hydroxylation of benzene to phenol. Microporous and Mesoporous Materials, 285, 223-230.
  • Yang, M., Jonsson, M., 2015. Surface reactivity of hydroxyl radicals formed upon catalytic decomposition of H2O2 on ZrO2. Journal of Molecular Catalysis A:Chemical, 400, 49-55.
  • Zeineb, O., Hedi, B.A., Jeday, M.R., Cheker, C., 2015. Kinetic study of the catalytic decomposition of H2O2 in phosphoric acid medium. Int. J. Of Hydrogen Ener., 40, 1278-1282.
  • Zhang, H., Deng, X., Jiao, C., Lu, L., Zhang, S., 2016. Preparation and catalytic activities for H2O2 decomposition of Rh/Au bimetallic nanoparticles. Materials Research Bulletin, 79, 29-35.

Synthesis, Characterization of Fe/KIT-6 and Investigation of Their Activities at Decomposition of H2O2 Reaction

Year 2021, , 442 - 448, 30.04.2021
https://doi.org/10.35414/akufemubid.865113

Abstract

Iron into the ordered cubic pores of Ia3d mesoporous silica, KIT-6, was performed by a hydrothermal method and utilizing a versatile structure directing agent, Pluronic P123 triblock copolymer, in n-butanol as co solvent. The effect of iron on the acidity of KIT-6 nanomaterial was investigated and materials loaded with Fe in different proportions (5%, 10%, 20% and blank) were compared. The prepared mesoporous Fe/KIT-6 was characterized by N2 adsoption-desorption, SEM, TEM, XRD and FT-IR analyses. Results displayed that iron ions were well incorporated into the KIT-6 framework and the entire ordered pore structure has been retained. Iron enhanced the catalytic activity of KIT-6 as strong acid sites. The Fe/KIT-6 was used as an effective, recyclable and green catalyst for decomposition of H2O2 under mild conditions (at room temperature, atmospheric pressure).

References

  • Carraro, PM., Blanco AAG, Soria FA, Lener G, Sapag K, Eimer GA, 2016. Understanding the role of nickel on the hydrogen storage capacity of Ni/MCM-41 materials. Microporous Mesoporous Mater, 231-319.
  • Dundar-Tekkaya E, Yürüm Y., 2016. Synthesis of palladium incorporated MCM-41 via microwave irradiation and investigation of its hydrogen storage properties. Int J Hydrogen Energy, 41, 9828-33.
  • Fekri, L.Z., Pour K.H., Zeinali, S., 2020. Synthesis, characterization and application of Copper/Schiff-base complex immobilized on KIT-6-NH2 magnetic nanoparticles for the synthesis of dihydropyridines. Journal of Organometallic Chemistry ,915, 121232.
  • Ghohe, N.M, Tayebee, R., Amini, M.M., 2019. Synthesis and characterization of mesoporous Nb-Zr/KIT-6 as a productive catalyst for the synthesis of benzylpyrazolyl coumins, Materials Chemistry and Physics, 223, 268-276.
  • Gopinath, S., Sahaya Murphin Kumar, P., Yasar Arafath, K.A., Thiruvengadaravi, K.V., Sivanesan, S., Baskaralingam, P., 2017. Efficient mesoporous SO4/Zr-KIT-6 solid acid catalyst for green diesel production from esterification of oleic acid, Fuel, 203, 488-500.
  • Gopinath, S., Vinoth Kumar, P., Sahaya Murphin Kumar, P., Yasar Arafath, K.A., Baskaralingam, P., 2018. Cs-tungstosilicic acid/Zr-KIT-6 for esterification of oleic acid and tranesterification of non-edible oils for green diesel production, Fuel, 234, 824-835.
  • He, Q., J. Shi, X. Cui, J. Zhao, Y. Chen, J. Zhou, 2009. Rhodamine B-co-condensed spherical SBA-15 nanoparticles: facile co-condensation synthesis and excellent fluorescence features, J. Mater. Chem. 19, 3395–3403.
  • Huang, X., Ding, J., Zhong, Q. 2015. Catalytic decomposition of H2O2 over Fe-based catalysts for simultaneous removal of Nox and SO2. Applied Surface Science, 326, 66-72.
  • Kishor, A.K. Ghoshal., 2017. Understanding the hydrothermal, thermal, mechanical and hydrolytic stability of mesoporous KIT-6: a comprehensive study, Microporous Mesoporous Mater., 127–135.
  • Li, Z., Luo, G., Chen T., Zeng, Z., Guo, S., Lv, J., Huang, S., Wang, Y., Ma, X., 2020. Bimetallic CoCu catalyst derived from in-situ grown Cu-ZIF-67 encapsulated inside KIT-6 for higher alcohol synthesis from syngas, Fuel, 278, 118292.
  • Liu, X., Wang, C., Zhu, T., 2020. Simultaneous removal of SO2 and Nox with OH from the catalytic decomposition of H2O2 over Fe-Mo mixed oxides. Journal of Hazardaous Mater. Doi:10.1016/j.jhazmat.2020.123936.
  • Luo, H., Cheng Y., Zeng, Y., Luo, K., Pan, X., 2020. Enhanced decomposition of H2O2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants. Science of the Total Environment. 732, 139335.
  • Ma, C., Feng, S., Zhou, J., Chen, R., Wei, Y., Liu, H., Wang, S. 2019. Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue. Applied Catal. B:Environmental, 259, 118015.
  • Pirez, C., J.-M. Caderon, J.-P. Dacquin, A.F. Lee, K. Wilson, 2012. Tunable KIT-6 mesoporous sulfonic acid catalysts for fatty acid esterification, ACS Catal. 2, 1607–1614.
  • Prathap, M.A., Kaur, B., Srivastava, R, 2012. Direct synthesis of metal oxide incorporated mesoporous SBA-15 and their applications in non-enzymatic sensing of glucose. J. Colloid Interface Sci. 381, 143-151.
  • Rivera-Jimenez, S. Mendez-Gonzalez, A. Hernandez-Maldonado, 2010. Metal (M= Co2+, Ni2+, and Cu2+) grafted mesoporous SBA-15: effect of transition metal incorporation and pH conditions on the adsorption of Naproxen from water, Microporous Mesoporous Mater. 132, 470–479.
  • Shen, S., J. Chen, R.T. Koodali, Y. Hu, Q. Xiao, J. Zhou, X. Wang, L. Guo, 2014. Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production, Appl. Catal., B, 150, 138–146.
  • Tuysuz, H., C.W. Lehmann, H. Bongard, B. Tesche, R. Schmidt, F. Schuth, 2018. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM- 41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy, J. Am. Chem. Soc. 130, 11510–11517.
  • Voitko, K., Toth, A., Deminanenko, E., 2015. Catalytic performance of carbon nanotubes in H2O2 decomposition:Experimental and quantum chemical study. Journal of Colloidal and Interface Science, 437, 283-290.
  • Wang, W., R. Qi, W. Shan, X. Wang, Q. Jia, J. Zhao, C. Zhang, H. Ru., 2014. Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process, Microporous Mesoporous Mater., 194, 167–173.
  • Wang, X., Li, D., Nan, Z., 2019. Effect of N content in g-C3N4 as metal free cataltsts on H2O2 decomposition for MB degradation. Separation and Purification Tech. 224, 152-162.
  • Wassel, M.A., El-Tabl, A.S., Elzaref, A.S., 2015. Study of some parameters on the rate of the catalyzed decomposition of hydrogen peroxide by complex. Internatioanl J. Of Science and Research, doi:10.21275/29061705.
  • Xu, J., Hong, Y., Cheng, M-J., Xue, B., Li Y-X., 2019. Vanadyl acetylacetonate grafted on ordered mesoporous silica KIT-6 and its enhanced catalytic performance for direct hydroxylation of benzene to phenol. Microporous and Mesoporous Materials, 285, 223-230.
  • Yang, M., Jonsson, M., 2015. Surface reactivity of hydroxyl radicals formed upon catalytic decomposition of H2O2 on ZrO2. Journal of Molecular Catalysis A:Chemical, 400, 49-55.
  • Zeineb, O., Hedi, B.A., Jeday, M.R., Cheker, C., 2015. Kinetic study of the catalytic decomposition of H2O2 in phosphoric acid medium. Int. J. Of Hydrogen Ener., 40, 1278-1282.
  • Zhang, H., Deng, X., Jiao, C., Lu, L., Zhang, S., 2016. Preparation and catalytic activities for H2O2 decomposition of Rh/Au bimetallic nanoparticles. Materials Research Bulletin, 79, 29-35.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Gamze Gündüz Meriç 0000-0001-9487-4267

Publication Date April 30, 2021
Submission Date January 20, 2021
Published in Issue Year 2021

Cite

APA Gündüz Meriç, G. (2021). Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(2), 442-448. https://doi.org/10.35414/akufemubid.865113
AMA Gündüz Meriç G. Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2021;21(2):442-448. doi:10.35414/akufemubid.865113
Chicago Gündüz Meriç, Gamze. “Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu Ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 2 (April 2021): 442-48. https://doi.org/10.35414/akufemubid.865113.
EndNote Gündüz Meriç G (April 1, 2021) Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 2 442–448.
IEEE G. Gündüz Meriç, “Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 2, pp. 442–448, 2021, doi: 10.35414/akufemubid.865113.
ISNAD Gündüz Meriç, Gamze. “Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu Ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/2 (April 2021), 442-448. https://doi.org/10.35414/akufemubid.865113.
JAMA Gündüz Meriç G. Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:442–448.
MLA Gündüz Meriç, Gamze. “Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu Ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 2, 2021, pp. 442-8, doi:10.35414/akufemubid.865113.
Vancouver Gündüz Meriç G. Fe/KIT-6 Katalizörlerinin Sentezi, Karakterizasyonu ve H2O2 Bozunma Reaksiyonunda Aktivitelerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(2):442-8.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.