Research Article
BibTex RIS Cite

Molibden Oksit, Pluronic®F127 ve Mantarın Lityum tetraborat/ITO Elektrotların Kapasitif Özelliklerine Etkilerinin İncelenmesi

Year 2021, , 196 - 208, 24.02.2021
https://doi.org/10.35414/akufemubid.870456

Abstract

Günümüzde alternatif enerji üretim süreçleri, üretilen enerjinin verimli bir şekilde depolanması ve enerji kaynaklarının çevre dostu malzemelerden üretilmesi önemli araştırma konularıdır. Bu amaçla enerji depolamada kullanılacak süper kapasitörlerde elektrot materyali olarak iletken polimerler, grafite alternatif mantar gibi biyokütle katkıları ve geçiş metal oksitleri (GMO) elektrokimyasal olarak araştırılmıştır. Elektrot hazırlarken lityum tetraborat (LTB) doping tuzu olarak tercih edilmiştir. LTB’ye sırasıyla molibden oksit (MoO3), Pluronic®F127 ve mantar katkılanarak elektrotlar hazırlanmıştır. Hazırlanan elektrotların elektrokimyasal özellikleri uygulanan potansiyel aralığındaki akım yoğunluğu değişimi dikkate alınarak araştırılmış ve elde edilen bulgular LTB-MoO3-F127-Mantar/ITO elektrotun daha iyi elektrokimyasal enerji depolama kapasitesine sahip olduğunu göstermiştir. Elektrokimyasal çalışmalarda LTB-MoO3-F127-Mantar/ITO elektrotta LTB/ITO elektrota kıyasla yaklaşık 3,5 kat kapasitif etkinin artırıldığı ve elektrot çevrim ömrünün 20 çevrim sonrası %86 (anodik) ve %87 (katodik) oranlarında korunduğu gösterilmiştir. Bu çalışma ile süper kapasitör uygulamaları için uygun maliyetli, yüksek performanslı ve çevre dostu teknoloji olarak grafite alternatif önerilen mantar-karbon tabanlı anot teknolojisi geliştirmek amacıyla GMO, iletken polimer ve mantar katkılamasının optimize edilerek grafit anotların yerini alabileceği önerilmiştir.

Thanks

Bu çalışmada kullanılan LTB ve MoO3’in temini Maden Tetkik ve Arama (MTA) Genel Müdürlüğü tarafından sağlanmıştır. Bu çalışmaya katkılarından dolayı MTA Genel Müdürlüğüne teşekkür ederiz.

References

  • Abdel-Khalek, E. K., M. A. Elsharkawy, M. A. Motawea, E. Elesh and A. T. M. Farag, 2020. Dielectric and Thermal Properties of Tetragonal PbTiO(3)Nanoparticles/Clusters Embedded in Lithium Tetraborate Glass Matrix. Silicon, Accepted manuscript 1-10.
  • Abouelamaiem, D. I., M. J. Mostazo-López, G. He, D. Patel, T. P. Neville, I. P. Parkin, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós and A. B. Jorge, 2018. New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. Journal of Energy Storage, 19: 337-347.
  • Bahri, G. and M. E. AYHAN, 2019. Molibden Oksit-Oktadesilamin/Pluronic® F127 Kompozit Elektrotların Kapasitif Özelliklerinin İncelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1): 487-499.
  • Boota, M., M. Pasini, F. Galeotti, W. Porzio, M. Q. Zhao, J. Halim and Y. Gogotsi, 2017. Interaction of Polar and Nonpolar Polyfluorenes with Layers of Two-Dimensional Titanium Carbide (MXene): Intercalation and Pseudocapacitance. Chemistry of Materials, 29(7): 2731-2738.
  • Campbell, B., R. Ionescu, Z. Favors, C. S. Ozkan and M. Ozkan, 2015. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries. Scientific Reports, 5(1): 14575.
  • Elgrishi, N., K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart and J. L. Dempsey, 2018. A Practical Beginner's Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2): 197-206.
  • Glushenkov, A. M., D. Hulicova-Jurcakova, D. Llewellyn, G. Q. Lu and Y. Chen, 2010. Structure and Capacitive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V2O5. Chemistry of Materials, 22(3): 914-921.
  • Gür, B., 2020. Determination of the pH-dependent immobilization efficacy of α-glycosidase and its catalytic performance on SnO2:Sb/ITO thin films. Biochemical Engineering Journal, 163: 107758.
  • Gür, B. and K. Meral, 2019. Characterization of merocyanine 540-octadecylamine thin films fabricated by Langmuir-Blodgett and Spin-Coating techniques. Journal of Molecular Structure, 1197: 227-234.
  • Islam, M. M., T. Bredow and C. Minot, 2006. Ionic Conductivity of Li2B4O7." The Journal of Physical Chemistry B, 110(35): 17518-17523.
  • Jayalakshmi, M. and K. Balasubramanian, 2008. Simple Capacitors to Supercapacitors - An Overview. International Journal of Electrochemical Science, 3(11): 1196-1217.
  • Karaca, E., 2019. Süperkapasitör Enerji Depolama Uygulamaları İçin Nano-Boyutlu Metal Oksit İçeren Polipirol Esaslı Kompozit Malzemelerin Elektrokimyasal Sentezi. Doctora (Ph.D.), Fen Bilimleri Enstitüsü, Hacettepe University, 196.
  • Klinbumrung, A., T. Thongtem and S. Thongtem, 2012. Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process. Journal of Nanomaterials, 2012.
  • Kwon, S. H., B.-S. Kim, S.-G. Kim, B.-J. Lee, M.-S. Kim and J. C. Jung, 2016. Preparation of Nano-Porous Activated Carbon Aerogel Using a Single-Step Activation Method for Use as High-Power EDLC Electrode in Organic Electrolyte. Journal of Nanoscience and Nanotechnology, 16(5): 4598-4604.
  • Larcher, D. and J.-M. Tarascon, 2015. Towards greener and more sustainable batteries for electrical energy storage. Nature chemistry, 7(1): 19-29.
  • Li, Y., S. Liu, W. Chen, S. Li, L. Shi and Y. Zhao, 2017. Facile synthesis of flower-like cobalt sulfide hierarchitectures with superior electrode performance for supercapacitors. Journal of Alloys and Compounds, 712: 139-146.
  • Liu, H., Z. Yao, Y. Liu, Y. Diao, G. Hu, Q. Zhang and Z. Li, 2021. In situ synthesis of nitrogen site activated cobalt sulfide@N, S dual-doped carbon composite for a high-performance asymmetric supercapacitor. Journal of Colloid and Interface Science, 585: 30-42.
  • Ma, X. M., W. Q. Zhou, D. Z. Mo, K. X. Zhang, Z. P. Wang, F. X. Jiang, D. F. Hu, L. Q. Dong and J. K. Xu, 2015. Electrochemical preparation of poly(2,3-dihydrothieno 3,4-b 1,4 dioxin-2-yl)methanol)/carbon fiber core/shell structure composite and its high capacitance performance. Journal of Electroanalytical Chemistry, 743: 53-59.
  • Majumdar, D. and S. Ghosh, 2020. Recent advancements of copper oxide based nanomaterials for supercapacitor applications. Journal of Energy Storage, 34, 101995.
  • Malik, Q. U., S. Iftikhar, S. Zahid, S. Z. Safi, A. F. Khan, M. Nawshad, S. Ghafoor, A. S. Khan and A. T. Shah, 2020. Smart injectable self-setting bioceramics for dental applications." Materials Science & Engineering C-Materials for Biological Applications, 113.
  • Mansur, H. S. and H. S. Costa, 2008. Nanostructured poly (vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chemical Engineering Journal, 137(1): 72-83.
  • Nam, K.-W. and K.-B. Kim, 2002. A study of the preparation of NiO x electrode via electrochemical route for supercapacitor applications and their charge storage mechanism. Journal of the Electrochemical Society 149(3): A346.
  • Perananthan, S., J. S. Bonso and J. P. Ferraris, 2016. Supercapacitors utilizing electrodes derived from polyacrylonitrile fibers incorporating tetramethylammonium oxalate as a porogen. Carbon, 106: 20-27.
  • Raman, V., N. V. Mohan, B. Balakrishnan, R. Rajmohan, V. Rajangam, A. Selvaraj and H. J. Kim, 2020. Porous shiitake mushroom carbon composite with NiCo2O4 nanorod electrochemical characteristics for efficient supercapacitor applications. Ionics, 26(1): 345-354.
  • Ranjithkumar, R., S. E. Arasi, P. Devendran, N. Nallamuthu, P. Lakshmanan, S. Sudhahar, A. Arivarasan and M. K. Kumar, 2020. Investigations and fabrication of Ni(OH)2 encapsulated carbon nanotubes nanocomposites based asymmetrical hybrid electrochemical supercapacitor. Journal of Energy Storage, 32: 101934.
  • Reddy, R. N., & Reddy, R. G., 2002. MnO2 as electrode material for electrochemical capacitors. Electrochemical Capacitor and Hybrid Power Sources, 7.
  • Robertson, D. S. and I. M. Young, 1982. The growth and growth-mechanism of lithium tetraborate. Journal of Materials Science, 17(6): 1729-1738.
  • Rudge, A., J. Davey, I. Raistrick, S. Gottesfeld and J. P. Ferraris, 1994. Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources, 47(1): 89-107.
  • Santos, L., P. Wojcik, J. V. Pinto, E. Elangovan, J. Viegas, L. Pereira, R. Martins and E. Fortunato, 2015. Structure and morphologic influence of WO3 nanoparticles on the electrochromic performance of dual‐phase a‐WO3/WO3 inkjet printed films. Advanced Electronic Materials, 1(1-2): 1400002.
  • Shakir, I., M. Shahid, M. Nadeem and D. J. Kang, 2012. Tin oxide coating on molybdenum oxide nanowires for high performance supercapacitor devices. Electrochimica Acta, 72: 134-137.
  • Sree Harsha, C. H., T. Suganthan and S. Srihari, 2020. Performance and Emission Characteristics of Diesel Engine using Biodiesel-Diesel-Nanoparticle Blends-An Experimental Study. Materials Today: Proceedings, 24: 1355-1364.
  • Sudhakar, Y., M. Selvakumar and D. K. Bhat, 2015. Lithium salts doped biodegradable gel polymer electrolytes for supercapacitor application. J. Mater. Environ. Sci, 6: 1218-1227.
  • Sudhakar, Y. N., M. Selvakumar and D. K. Bhat, 2014. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte. Materials Science and Engineering: B, 180: 12-19.
  • Thangappan, R., M. Arivanandhan, S. Kalaiselvam, R. Jayavel and Y. Hayakawa, 2018. Molybdenum Oxide/Graphene Nanocomposite Electrodes with Enhanced Capacitive Performance for Supercapacitor Applications. Journal of Inorganic and Organometallic Polymers and Materials, 28(1): 50-62.
  • Thiyagarajan, S., M. A. Vallejo, S. Kumar, P. V. Cerón, E. Rivera, R. Navarro, V. Jayaramakrishnan, H. R. Vega-Carrillo and M. A. Sosa, 2018. Thermoluminescence from Cu Doped Lithium Tetraborate Irradiated with X-ray and γ Using 137Cs Radioactive Source. Journal of nanoscience and nanotechnology, 18(10): 6919-6927.
  • Touboul, M. and E. Betourne, 1996. Dehydration process of lithium borates. Solid State Ionics, 84(3-4): 189-197.
  • Vanhardeveld, R. M., P. L. J. Gunter, L. J. Vanijzendoorn, W. Wieldraaijer, E. W. Kuipers and J. W. Niemantsverdriet, 1995. Deposition of Inorganic Salts From Solution on Flat Substrates By Spin-Coating - Theory, Quantification and Application to Model Catalysts. Applied Surface Science, 84(4): 339-346.
  • Varol, A. G., 2012. Elektrokimyasal yolla karbon malzeme yüzeyinde sentezlenen politiyofen ve bazı türevlerinin süperkapasitör aktif materyali olarak kullanımı, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, ESOGÜ, 184.
  • Wang, Y., K. Xu, Y. Li and Q. Feng, 2015. Fourier transform infrared spectroscopy analysis of the active components in serum of rats treated with Zuogui Pill. Journal of Traditional Chinese Medical Sciences, 2(4): 264-269.
  • Xiao, Q. and X. Zhou, 2003. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochimica Acta, 48(5): 575-580.
  • Yalcin, A. and M. Gonen, 2020. Lithium Tetraborate Production from The Reaction of Boric Acid and Lithium Carbonate Using Carbon Dioxide. Sigma Journal of Engineering and Natural Sciences-Sigma Muhendislik Ve Fen Bilimleri Dergisi, 38(3): 1121-1132.
  • Zhang, M. and J. Dahn, 1996. Electrochemical lithium intercalation in VO 2 (B) in aqueous electrolytes. Journal of the Electrochemical Society, 143(9): 2730.
  • Zheng, F., Q. Lin, S. Wu and Z.-z. Zhu, 2020. Influence of the Fe-Si-O framework in crystal structure on the phase stability and electrochemical performance of Li2FeSiO4 cathode. Solid State Ionics, 356: 115436.

Investigation of the Effects of Molybdenum Oxide, Pluronic®F127 and Mushroom on Capacitive Properties of Lithium tetraborate/ITO Electrodes

Year 2021, , 196 - 208, 24.02.2021
https://doi.org/10.35414/akufemubid.870456

Abstract

Nowadays, alternative energy production processes, efficient storage of generated energy, and the production of energy resources from environmentally friendly materials are important research topics. For this purpose, conductive polymers, biomass additives such as mushroom and transition metal oxides (GMO) as electrode materials were investigated electrochemically towards supercapacitors used in energy storage. While preparing the electrode, lithium tetraborate (LTB) was preferred as the doping salt. Electrodes were prepared by adding molybdenum oxide (MoO3), Pluronic®F127, and mushroom to LTB, respectively. The electrochemical properties of the prepared electrodes were investigated considering the current density variation in the applied potential range, and the findings obtained showed that LTB-MoO3-F127-Mushroom/ITO electrode increased capacitive effect approximately 3.5 times compared to LTB/ITO electrode, and electrode cycle life was preserved at 86% (anodic) and 87% (cathodic) rates after 20 cycles. In electrochemical studies, it has been shown that the capacitive effect of LTB-MoO3-F127-Mushroom/ITO electrode is increased approximately 3.5 times compared to LTB/ITO electrode and that the electrode cycle life is preserved at 86% (anodic) and 87% (cathodic) rates after 20 cycles. In this study, a low cost, high performance, and environmentally friendly alternative technology is presented for super capacitor applications. It has been shown that the developed mushroom-carbon-based anode technology can replace graphite anodes by optimizing GMO, conductive polymer, and mushroom doping.

References

  • Abdel-Khalek, E. K., M. A. Elsharkawy, M. A. Motawea, E. Elesh and A. T. M. Farag, 2020. Dielectric and Thermal Properties of Tetragonal PbTiO(3)Nanoparticles/Clusters Embedded in Lithium Tetraborate Glass Matrix. Silicon, Accepted manuscript 1-10.
  • Abouelamaiem, D. I., M. J. Mostazo-López, G. He, D. Patel, T. P. Neville, I. P. Parkin, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós and A. B. Jorge, 2018. New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. Journal of Energy Storage, 19: 337-347.
  • Bahri, G. and M. E. AYHAN, 2019. Molibden Oksit-Oktadesilamin/Pluronic® F127 Kompozit Elektrotların Kapasitif Özelliklerinin İncelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1): 487-499.
  • Boota, M., M. Pasini, F. Galeotti, W. Porzio, M. Q. Zhao, J. Halim and Y. Gogotsi, 2017. Interaction of Polar and Nonpolar Polyfluorenes with Layers of Two-Dimensional Titanium Carbide (MXene): Intercalation and Pseudocapacitance. Chemistry of Materials, 29(7): 2731-2738.
  • Campbell, B., R. Ionescu, Z. Favors, C. S. Ozkan and M. Ozkan, 2015. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries. Scientific Reports, 5(1): 14575.
  • Elgrishi, N., K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart and J. L. Dempsey, 2018. A Practical Beginner's Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2): 197-206.
  • Glushenkov, A. M., D. Hulicova-Jurcakova, D. Llewellyn, G. Q. Lu and Y. Chen, 2010. Structure and Capacitive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V2O5. Chemistry of Materials, 22(3): 914-921.
  • Gür, B., 2020. Determination of the pH-dependent immobilization efficacy of α-glycosidase and its catalytic performance on SnO2:Sb/ITO thin films. Biochemical Engineering Journal, 163: 107758.
  • Gür, B. and K. Meral, 2019. Characterization of merocyanine 540-octadecylamine thin films fabricated by Langmuir-Blodgett and Spin-Coating techniques. Journal of Molecular Structure, 1197: 227-234.
  • Islam, M. M., T. Bredow and C. Minot, 2006. Ionic Conductivity of Li2B4O7." The Journal of Physical Chemistry B, 110(35): 17518-17523.
  • Jayalakshmi, M. and K. Balasubramanian, 2008. Simple Capacitors to Supercapacitors - An Overview. International Journal of Electrochemical Science, 3(11): 1196-1217.
  • Karaca, E., 2019. Süperkapasitör Enerji Depolama Uygulamaları İçin Nano-Boyutlu Metal Oksit İçeren Polipirol Esaslı Kompozit Malzemelerin Elektrokimyasal Sentezi. Doctora (Ph.D.), Fen Bilimleri Enstitüsü, Hacettepe University, 196.
  • Klinbumrung, A., T. Thongtem and S. Thongtem, 2012. Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process. Journal of Nanomaterials, 2012.
  • Kwon, S. H., B.-S. Kim, S.-G. Kim, B.-J. Lee, M.-S. Kim and J. C. Jung, 2016. Preparation of Nano-Porous Activated Carbon Aerogel Using a Single-Step Activation Method for Use as High-Power EDLC Electrode in Organic Electrolyte. Journal of Nanoscience and Nanotechnology, 16(5): 4598-4604.
  • Larcher, D. and J.-M. Tarascon, 2015. Towards greener and more sustainable batteries for electrical energy storage. Nature chemistry, 7(1): 19-29.
  • Li, Y., S. Liu, W. Chen, S. Li, L. Shi and Y. Zhao, 2017. Facile synthesis of flower-like cobalt sulfide hierarchitectures with superior electrode performance for supercapacitors. Journal of Alloys and Compounds, 712: 139-146.
  • Liu, H., Z. Yao, Y. Liu, Y. Diao, G. Hu, Q. Zhang and Z. Li, 2021. In situ synthesis of nitrogen site activated cobalt sulfide@N, S dual-doped carbon composite for a high-performance asymmetric supercapacitor. Journal of Colloid and Interface Science, 585: 30-42.
  • Ma, X. M., W. Q. Zhou, D. Z. Mo, K. X. Zhang, Z. P. Wang, F. X. Jiang, D. F. Hu, L. Q. Dong and J. K. Xu, 2015. Electrochemical preparation of poly(2,3-dihydrothieno 3,4-b 1,4 dioxin-2-yl)methanol)/carbon fiber core/shell structure composite and its high capacitance performance. Journal of Electroanalytical Chemistry, 743: 53-59.
  • Majumdar, D. and S. Ghosh, 2020. Recent advancements of copper oxide based nanomaterials for supercapacitor applications. Journal of Energy Storage, 34, 101995.
  • Malik, Q. U., S. Iftikhar, S. Zahid, S. Z. Safi, A. F. Khan, M. Nawshad, S. Ghafoor, A. S. Khan and A. T. Shah, 2020. Smart injectable self-setting bioceramics for dental applications." Materials Science & Engineering C-Materials for Biological Applications, 113.
  • Mansur, H. S. and H. S. Costa, 2008. Nanostructured poly (vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chemical Engineering Journal, 137(1): 72-83.
  • Nam, K.-W. and K.-B. Kim, 2002. A study of the preparation of NiO x electrode via electrochemical route for supercapacitor applications and their charge storage mechanism. Journal of the Electrochemical Society 149(3): A346.
  • Perananthan, S., J. S. Bonso and J. P. Ferraris, 2016. Supercapacitors utilizing electrodes derived from polyacrylonitrile fibers incorporating tetramethylammonium oxalate as a porogen. Carbon, 106: 20-27.
  • Raman, V., N. V. Mohan, B. Balakrishnan, R. Rajmohan, V. Rajangam, A. Selvaraj and H. J. Kim, 2020. Porous shiitake mushroom carbon composite with NiCo2O4 nanorod electrochemical characteristics for efficient supercapacitor applications. Ionics, 26(1): 345-354.
  • Ranjithkumar, R., S. E. Arasi, P. Devendran, N. Nallamuthu, P. Lakshmanan, S. Sudhahar, A. Arivarasan and M. K. Kumar, 2020. Investigations and fabrication of Ni(OH)2 encapsulated carbon nanotubes nanocomposites based asymmetrical hybrid electrochemical supercapacitor. Journal of Energy Storage, 32: 101934.
  • Reddy, R. N., & Reddy, R. G., 2002. MnO2 as electrode material for electrochemical capacitors. Electrochemical Capacitor and Hybrid Power Sources, 7.
  • Robertson, D. S. and I. M. Young, 1982. The growth and growth-mechanism of lithium tetraborate. Journal of Materials Science, 17(6): 1729-1738.
  • Rudge, A., J. Davey, I. Raistrick, S. Gottesfeld and J. P. Ferraris, 1994. Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources, 47(1): 89-107.
  • Santos, L., P. Wojcik, J. V. Pinto, E. Elangovan, J. Viegas, L. Pereira, R. Martins and E. Fortunato, 2015. Structure and morphologic influence of WO3 nanoparticles on the electrochromic performance of dual‐phase a‐WO3/WO3 inkjet printed films. Advanced Electronic Materials, 1(1-2): 1400002.
  • Shakir, I., M. Shahid, M. Nadeem and D. J. Kang, 2012. Tin oxide coating on molybdenum oxide nanowires for high performance supercapacitor devices. Electrochimica Acta, 72: 134-137.
  • Sree Harsha, C. H., T. Suganthan and S. Srihari, 2020. Performance and Emission Characteristics of Diesel Engine using Biodiesel-Diesel-Nanoparticle Blends-An Experimental Study. Materials Today: Proceedings, 24: 1355-1364.
  • Sudhakar, Y., M. Selvakumar and D. K. Bhat, 2015. Lithium salts doped biodegradable gel polymer electrolytes for supercapacitor application. J. Mater. Environ. Sci, 6: 1218-1227.
  • Sudhakar, Y. N., M. Selvakumar and D. K. Bhat, 2014. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte. Materials Science and Engineering: B, 180: 12-19.
  • Thangappan, R., M. Arivanandhan, S. Kalaiselvam, R. Jayavel and Y. Hayakawa, 2018. Molybdenum Oxide/Graphene Nanocomposite Electrodes with Enhanced Capacitive Performance for Supercapacitor Applications. Journal of Inorganic and Organometallic Polymers and Materials, 28(1): 50-62.
  • Thiyagarajan, S., M. A. Vallejo, S. Kumar, P. V. Cerón, E. Rivera, R. Navarro, V. Jayaramakrishnan, H. R. Vega-Carrillo and M. A. Sosa, 2018. Thermoluminescence from Cu Doped Lithium Tetraborate Irradiated with X-ray and γ Using 137Cs Radioactive Source. Journal of nanoscience and nanotechnology, 18(10): 6919-6927.
  • Touboul, M. and E. Betourne, 1996. Dehydration process of lithium borates. Solid State Ionics, 84(3-4): 189-197.
  • Vanhardeveld, R. M., P. L. J. Gunter, L. J. Vanijzendoorn, W. Wieldraaijer, E. W. Kuipers and J. W. Niemantsverdriet, 1995. Deposition of Inorganic Salts From Solution on Flat Substrates By Spin-Coating - Theory, Quantification and Application to Model Catalysts. Applied Surface Science, 84(4): 339-346.
  • Varol, A. G., 2012. Elektrokimyasal yolla karbon malzeme yüzeyinde sentezlenen politiyofen ve bazı türevlerinin süperkapasitör aktif materyali olarak kullanımı, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, ESOGÜ, 184.
  • Wang, Y., K. Xu, Y. Li and Q. Feng, 2015. Fourier transform infrared spectroscopy analysis of the active components in serum of rats treated with Zuogui Pill. Journal of Traditional Chinese Medical Sciences, 2(4): 264-269.
  • Xiao, Q. and X. Zhou, 2003. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochimica Acta, 48(5): 575-580.
  • Yalcin, A. and M. Gonen, 2020. Lithium Tetraborate Production from The Reaction of Boric Acid and Lithium Carbonate Using Carbon Dioxide. Sigma Journal of Engineering and Natural Sciences-Sigma Muhendislik Ve Fen Bilimleri Dergisi, 38(3): 1121-1132.
  • Zhang, M. and J. Dahn, 1996. Electrochemical lithium intercalation in VO 2 (B) in aqueous electrolytes. Journal of the Electrochemical Society, 143(9): 2730.
  • Zheng, F., Q. Lin, S. Wu and Z.-z. Zhu, 2020. Influence of the Fe-Si-O framework in crystal structure on the phase stability and electrochemical performance of Li2FeSiO4 cathode. Solid State Ionics, 356: 115436.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Bahri Gür 0000-0003-0579-6354

Muhammed Emre Ayhan 0000-0003-2324-6858

Publication Date February 24, 2021
Submission Date January 29, 2021
Published in Issue Year 2021

Cite

APA Gür, B., & Ayhan, M. E. (2021). Molibden Oksit, Pluronic®F127 ve Mantarın Lityum tetraborat/ITO Elektrotların Kapasitif Özelliklerine Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(1), 196-208. https://doi.org/10.35414/akufemubid.870456
AMA Gür B, Ayhan ME. Molibden Oksit, Pluronic®F127 ve Mantarın Lityum tetraborat/ITO Elektrotların Kapasitif Özelliklerine Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. February 2021;21(1):196-208. doi:10.35414/akufemubid.870456
Chicago Gür, Bahri, and Muhammed Emre Ayhan. “Molibden Oksit, Pluronic®F127 Ve Mantarın Lityum tetraborat/ITO Elektrotların Kapasitif Özelliklerine Etkilerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 1 (February 2021): 196-208. https://doi.org/10.35414/akufemubid.870456.
EndNote Gür B, Ayhan ME (February 1, 2021) Molibden Oksit, Pluronic®F127 ve Mantarın Lityum tetraborat/ITO Elektrotların Kapasitif Özelliklerine Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 1 196–208.
IEEE B. Gür and M. E. Ayhan, “Molibden Oksit, Pluronic®F127 ve Mantarın Lityum tetraborat/ITO Elektrotların Kapasitif Özelliklerine Etkilerinin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 1, pp. 196–208, 2021, doi: 10.35414/akufemubid.870456.
ISNAD Gür, Bahri - Ayhan, Muhammed Emre. “Molibden Oksit, Pluronic®F127 Ve Mantarın Lityum tetraborat/ITO Elektrotların Kapasitif Özelliklerine Etkilerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/1 (February 2021), 196-208. https://doi.org/10.35414/akufemubid.870456.
JAMA Gür B, Ayhan ME. Molibden Oksit, Pluronic®F127 ve Mantarın Lityum tetraborat/ITO Elektrotların Kapasitif Özelliklerine Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:196–208.
MLA Gür, Bahri and Muhammed Emre Ayhan. “Molibden Oksit, Pluronic®F127 Ve Mantarın Lityum tetraborat/ITO Elektrotların Kapasitif Özelliklerine Etkilerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 1, 2021, pp. 196-08, doi:10.35414/akufemubid.870456.
Vancouver Gür B, Ayhan ME. Molibden Oksit, Pluronic®F127 ve Mantarın Lityum tetraborat/ITO Elektrotların Kapasitif Özelliklerine Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(1):196-208.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.