Research Article
BibTex RIS Cite

Structural, Energetic and Magnetic Properties of Co-M-Ni (M= Fe, Ag) Transition Metal Nanoalloys

Year 2021, , 1027 - 1037, 31.10.2021
https://doi.org/10.35414/akufemubid.930848

Abstract

In this study, a theoretical investigation about structural, energetic, and magnetic properties of Co1FenNi12-n (n=0-12) ve Co1AgnNi12-n (n=0-12) ternary nanoalloy systems has been performed. Our calculations have been performed combining Gupta and DFT approaches on chosen systems. The optimization results at Gupta level show that, Fe, Ag and Ni atoms prefer to locate on the surface and Co atoms tend to locate at the centre. From the excess energy analysis at Gupta level, Co1Fe6Ni6 and Co1Ag6Ni6 nanoalloys was found to be the most stable composition for Co1FenNi12-n (n=0-12) ve Co1AgnNi12-n (n=0-12) nanoalloys, respectively. Also, the Gupta level energetically does not compatible with the DFT level. The total magnetic moments of the nanoalloys and local magnetic moments and local charges of the atoms have been examined. It has been observed that the total magnetic moment of the 13 atom Co-M-Ni (M=Fe, Ag) nanoalloys increase by the addition of ferromagnetic Fe atoms and generally decrease by the addition of non-magnetic Ag atoms. The simulation results show that the structural, energetic, and magnetic properties of Co1FenNi12-n (n=0-12) ve Co1AgnNi12-n (n=0-12) nanoalloys vary depending on the composition.

References

  • Abhandlung, G., 2013. Structural and electronic properties of transition metal nanoalloys and magnetic compounds, Doktora Tezi, Universitat Bayreuth,119
  • Annalakshmi, M., Balasubramanian, P., Chen, S. and Chen, T., 2019. One pot synthesis of nanospheres-like trimetallic NiFeCo nanoalloy: A superior electrocatalyst for electrochemical sensing of hydrazine in water bodies. Sensors & Actuators: B. Chemical, 296, 126620.
  • Bates, M.K., Jia, Q., Doan, H., Liang, W. and Mukerjee, S., 2016. Charge-Transfer Effects in Ni-Fe&Ni-Fe-Co Mixed-Metal-Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catalysis, 6(1), 155–161.
  • Billas, I.M.L., Chatelain, A. and De Heer, W.A., 1994. Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters. Science, 265(5179), 1682-1684.
  • Binns C., 2014. Nanomagnetism: Fundamentals and Applications. Richard E. Palmer (Series Editör), Elsevier, 1-32.
  • Bochicchio, D. and Ferrando, R., 2013. Morphological instability of core-shell metallic nanoparticles. Physical Review B, 87, 165435.
  • Boroujeni, K.P., Shahrokh, M., Karvani, J., Moradi, N., Farokhnia, A. and Mobini, M., 2019. Synthesis and Study of Catalytic, Anti–Bacterial, Anti–Oxidant, and DNA Cleavage Properties of Ag–Co and Ag–Ni Magnetic Nanoparticles. Acta Chimica Slovenica, 66(3),542-551.
  • Bouzit, F.Z., Nemamcha, A., Moumeni, H. and Rehspringer J.L., 2017. Morphology and Rietveld analysis of nanostructured Co-Ni electrodeposited thin films obtained at different current densities. Surface and Coatings Technology, 315, 172-180.
  • Calvo, F., 2013. Nanoalloys From Fundamentals to Emergent Applications. Elsevier, 1-405.
  • Çelik, Ö. and Fırat, T., 2018. Synthesis of FeCo Magnetic Nanoalloys and Investigation of Heating Properties for Magnetic Fluid Hyperthermia. Journal of Magnetism and Magnetic Materials, 456, 11-16.
  • Ebrahimi, F., Sajjadi, S.A. and Babakhani, A., 2019. On the role of structural variables in magnetic properties of Co(1-x)NixFe2O4 nanoferrites. Ceramics International, 45, 20921–20928.
  • El-Gendy, A.A. 2018. Core/Shell Magnetic Nanoparticles for Biomedical Applications. Elsevier, 41–58.
  • Fernandez, E.M. and Balbas, L.C., 2005. Structural Properties Of Bimetallic Clusters From Density Functional Calculations. International Journal Of Modern Physics B, 19, 2339-2344.
  • Ferrando, R., 2016. Structure and properties of nanoalloys. Richard E. Palmer (Series Editör), Elsevier, 1-327.
  • Fu, G., Chen, Y., Cui, Z., Li, Y., Zhou, W., Xin, S., Tang, Y. and Goodenough, J. B., 2016. A Novel Hydrogel-derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes. Nano Letters, 16(10), 6516–6522.
  • Giannozzi, P. et al., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics:Condensed Matter, 21(39), 395502.
  • Giannozzi, P. et al., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics:Condensed Matter, 29(46), 465901.
  • Klencsar, Z., Nemeth, P., Sandor, Z., Horvath, T., Sajo, I.E., Meszaros, S., Mantilla, J., Coaquira, J.A.H., Garg, V.K., Kuzmann, E. and Tolnai, G., 2016. Structure and magnetism of Fe-Co alloy nanoparticles. Journal of Alloys and Compounds, 674, 153-161.
  • Kuntová, Z., Rossi, G. and Ferrando, R., 2008. Melting of core-shell Ag-Ni and Ag-Co nanoclusters studied via molecular dynamics simulations. Physical Review B, 77, 205431.
  • Nam, G., Son, Y., Park, S.O., Jeon, W.C., Jang, H., Park, J., Chae, S., Yoo, Y., Ryu, J., Kim, M.G., Kwak, S.K. and Cho, J., 2018. A Ternary Ni46Co40Fe14 Nanoalloy-Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc–Air Batteries. Advanced Materials, 30(46),1803372.
  • Panday, S., Jeevanandam P. and Daniel, B.S.S., 2013. Synthesis and magnetic properties of nanocrystalline Co-Ni alloys:A review. Materials Science Forum, 736, 229-240.
  • Perdew, J.P., Burke, K. and Ernzerhof, M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868.
  • Salati, A., Ramazani, A. and Kashi, M.A., 2020. Tuning hyperthermia properties of FeNiCo ternary alloy nanoparticles by morphological and magnetic characteristics. Journal of Magnetism and Magnetic Materials, 498, 166172.
  • Sun, C., Lee, J.S.H. and Zhang, M., 2008. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60,1252–1265.
  • Taran, S., Garip, A.K. and Arslan, H., 2016. Theoretical study of the structures and chemical ordering of CoPd nanoalloys supported on MgO(001). International Journal of Modern Physics C, 27(11), 1650146.
  • Taran, S., 2019. 13 atomlu Cu-Au-Pt üçlü metal nanoalaşımların yapısal özellikleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7, 1204-1216.
  • Taran, S., Garip, A.K. and Arslan, H., 2020a. A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys. Chinese Physics B, 29(7), 077801.
  • Taran, S. and Arslan, H., 2020. Stability and magnetic behaviour of 19-,23-and 26-atom trimetallic Pt-Ni-Ag nanoalloys. Molecular Physics, 118(23), e1818859.
  • Taran, S., Garip, A.K. and Arslan, H., 2020b. Investigation of the chemical ordering and structural properties of the trimetallic (PtNi)@Ag nanoalloys. Journal of Cluster Science, 32, 199-208.
  • Theofanidis, S.A., Galvita, V.V., Konstantopoulos, C., Poelman H. and Marin, G.B., 2018. Fe-Based Nano-Materials in Catalysis. Materials, 11(5), 831.
  • Toparli, Ç., Ebin, B. and Gürmen, S., 2017. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles. Journal of Magnetism and Magnetic Materials, 423, 133–139.
  • Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895.
  • Varas, A., Aguilera-Granja, F., Rogan, J. and Kiwi, M., 2015. Structural, electronic, and magnetic properties of FexCoyNiz (x+y+z=13) clusters: A density-functional-theory study. Journal of Magnetism and Magnetic Materials, 394, 325–334.
  • Wales, D.J. and Doye, J.P.K., 1997. Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 Atoms. The Journal of Physical Chemistry A, 101(28), 5111-5116.
  • Yang, Y., Lin, Z., Gao, S., Su, J., Lun, Z., Xia, G., Chen, J., Zhang, R. and Chen, Q., 2017. Tuning electronic structures of non-precious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catalysis, 7(1), 469–479.
  • Yıldırım, H. ve Arslan, H., 2019. CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 336-351.
  • Yıldırım, H. and Arslan, H., 2020. Size and composition effect on structural properties and melting behaviors of Cu-Ag-Au ternary nanoalloys. International Journal of Modern Physics C, 31(6), 2050078.
  • Zeng, L., Cui, X., Chen, L., Ye, T., Huang, W., Ma, R., Zhang, X. and Shi, J., 2017. Non-noble bimetallic alloy encased in nitrogen-doped nanotubes as a highly active and durable electrocatalyst for oxygen reduction reaction. Carbon, 114, 347-355.

Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik ve Manyetik Özellikleri

Year 2021, , 1027 - 1037, 31.10.2021
https://doi.org/10.35414/akufemubid.930848

Abstract

Bu çalışmada, Co1FenNi12-n (n=0-12) ve Co1AgnNi12-n (n=0-12) üçlü nanoalaşım sistemlerinin yapısal, enerjik ve manyetik özellikleri hakkında teorik bir araştırma yapılmıştır. Hesaplamalarımız, seçilen sistemlerde Gupta ve DFT yaklaşımları birleştirilerek yapılmıştır. Gupta düzeyindeki optimizasyon sonuçları, Fe, Ag ve Ni atomlarının yüzeye yerleşmeyi tercih ettiğini ve Co atomlarının ise merkeze yerleşme eğiliminde olduğunu göstermektedir. Gupta düzeyindeki karışma enerjisi analizinden, Co1Fe6Ni6 ve Co1Ag6Ni6 nanoalaşımlarının sırasıyla Co1FenNi12-n (n=0-12) ve Co1AgnNi12-n (n=0-12) nanoalaşımları için en kararlı bileşim olduğu bulunmuştur. Ayrıca, Gupta düzeyi enerjik olarak DFT düzeyi ile uyumlu değildir. Nanoalaşımların toplam manyetik momentleri ve atomların lokal manyetik momentleri ve lokal yükleri de incelenmiştir. 13 atomlu Co-M-Ni (M= Fe, Ag) nanoalaşımlarının toplam manyetik momentinin ferromanyetik Fe atomlarının eklenmesiyle arttığı ve manyetik olmayan Ag atomlarının eklenmesiyle genellikle azaldığı görülmüştür. Simülasyon sonuçları, Co1FenNi12-n (n=0-12) ve Co1AgnNi12-n (n=0-12) nanoalaşımlarının yapısal, enerjik ve manyetik özelliklerinin kompozisyona bağlı olarak değiştiğini göstermektedir.

References

  • Abhandlung, G., 2013. Structural and electronic properties of transition metal nanoalloys and magnetic compounds, Doktora Tezi, Universitat Bayreuth,119
  • Annalakshmi, M., Balasubramanian, P., Chen, S. and Chen, T., 2019. One pot synthesis of nanospheres-like trimetallic NiFeCo nanoalloy: A superior electrocatalyst for electrochemical sensing of hydrazine in water bodies. Sensors & Actuators: B. Chemical, 296, 126620.
  • Bates, M.K., Jia, Q., Doan, H., Liang, W. and Mukerjee, S., 2016. Charge-Transfer Effects in Ni-Fe&Ni-Fe-Co Mixed-Metal-Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catalysis, 6(1), 155–161.
  • Billas, I.M.L., Chatelain, A. and De Heer, W.A., 1994. Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters. Science, 265(5179), 1682-1684.
  • Binns C., 2014. Nanomagnetism: Fundamentals and Applications. Richard E. Palmer (Series Editör), Elsevier, 1-32.
  • Bochicchio, D. and Ferrando, R., 2013. Morphological instability of core-shell metallic nanoparticles. Physical Review B, 87, 165435.
  • Boroujeni, K.P., Shahrokh, M., Karvani, J., Moradi, N., Farokhnia, A. and Mobini, M., 2019. Synthesis and Study of Catalytic, Anti–Bacterial, Anti–Oxidant, and DNA Cleavage Properties of Ag–Co and Ag–Ni Magnetic Nanoparticles. Acta Chimica Slovenica, 66(3),542-551.
  • Bouzit, F.Z., Nemamcha, A., Moumeni, H. and Rehspringer J.L., 2017. Morphology and Rietveld analysis of nanostructured Co-Ni electrodeposited thin films obtained at different current densities. Surface and Coatings Technology, 315, 172-180.
  • Calvo, F., 2013. Nanoalloys From Fundamentals to Emergent Applications. Elsevier, 1-405.
  • Çelik, Ö. and Fırat, T., 2018. Synthesis of FeCo Magnetic Nanoalloys and Investigation of Heating Properties for Magnetic Fluid Hyperthermia. Journal of Magnetism and Magnetic Materials, 456, 11-16.
  • Ebrahimi, F., Sajjadi, S.A. and Babakhani, A., 2019. On the role of structural variables in magnetic properties of Co(1-x)NixFe2O4 nanoferrites. Ceramics International, 45, 20921–20928.
  • El-Gendy, A.A. 2018. Core/Shell Magnetic Nanoparticles for Biomedical Applications. Elsevier, 41–58.
  • Fernandez, E.M. and Balbas, L.C., 2005. Structural Properties Of Bimetallic Clusters From Density Functional Calculations. International Journal Of Modern Physics B, 19, 2339-2344.
  • Ferrando, R., 2016. Structure and properties of nanoalloys. Richard E. Palmer (Series Editör), Elsevier, 1-327.
  • Fu, G., Chen, Y., Cui, Z., Li, Y., Zhou, W., Xin, S., Tang, Y. and Goodenough, J. B., 2016. A Novel Hydrogel-derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes. Nano Letters, 16(10), 6516–6522.
  • Giannozzi, P. et al., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics:Condensed Matter, 21(39), 395502.
  • Giannozzi, P. et al., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics:Condensed Matter, 29(46), 465901.
  • Klencsar, Z., Nemeth, P., Sandor, Z., Horvath, T., Sajo, I.E., Meszaros, S., Mantilla, J., Coaquira, J.A.H., Garg, V.K., Kuzmann, E. and Tolnai, G., 2016. Structure and magnetism of Fe-Co alloy nanoparticles. Journal of Alloys and Compounds, 674, 153-161.
  • Kuntová, Z., Rossi, G. and Ferrando, R., 2008. Melting of core-shell Ag-Ni and Ag-Co nanoclusters studied via molecular dynamics simulations. Physical Review B, 77, 205431.
  • Nam, G., Son, Y., Park, S.O., Jeon, W.C., Jang, H., Park, J., Chae, S., Yoo, Y., Ryu, J., Kim, M.G., Kwak, S.K. and Cho, J., 2018. A Ternary Ni46Co40Fe14 Nanoalloy-Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc–Air Batteries. Advanced Materials, 30(46),1803372.
  • Panday, S., Jeevanandam P. and Daniel, B.S.S., 2013. Synthesis and magnetic properties of nanocrystalline Co-Ni alloys:A review. Materials Science Forum, 736, 229-240.
  • Perdew, J.P., Burke, K. and Ernzerhof, M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868.
  • Salati, A., Ramazani, A. and Kashi, M.A., 2020. Tuning hyperthermia properties of FeNiCo ternary alloy nanoparticles by morphological and magnetic characteristics. Journal of Magnetism and Magnetic Materials, 498, 166172.
  • Sun, C., Lee, J.S.H. and Zhang, M., 2008. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60,1252–1265.
  • Taran, S., Garip, A.K. and Arslan, H., 2016. Theoretical study of the structures and chemical ordering of CoPd nanoalloys supported on MgO(001). International Journal of Modern Physics C, 27(11), 1650146.
  • Taran, S., 2019. 13 atomlu Cu-Au-Pt üçlü metal nanoalaşımların yapısal özellikleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7, 1204-1216.
  • Taran, S., Garip, A.K. and Arslan, H., 2020a. A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys. Chinese Physics B, 29(7), 077801.
  • Taran, S. and Arslan, H., 2020. Stability and magnetic behaviour of 19-,23-and 26-atom trimetallic Pt-Ni-Ag nanoalloys. Molecular Physics, 118(23), e1818859.
  • Taran, S., Garip, A.K. and Arslan, H., 2020b. Investigation of the chemical ordering and structural properties of the trimetallic (PtNi)@Ag nanoalloys. Journal of Cluster Science, 32, 199-208.
  • Theofanidis, S.A., Galvita, V.V., Konstantopoulos, C., Poelman H. and Marin, G.B., 2018. Fe-Based Nano-Materials in Catalysis. Materials, 11(5), 831.
  • Toparli, Ç., Ebin, B. and Gürmen, S., 2017. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles. Journal of Magnetism and Magnetic Materials, 423, 133–139.
  • Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895.
  • Varas, A., Aguilera-Granja, F., Rogan, J. and Kiwi, M., 2015. Structural, electronic, and magnetic properties of FexCoyNiz (x+y+z=13) clusters: A density-functional-theory study. Journal of Magnetism and Magnetic Materials, 394, 325–334.
  • Wales, D.J. and Doye, J.P.K., 1997. Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 Atoms. The Journal of Physical Chemistry A, 101(28), 5111-5116.
  • Yang, Y., Lin, Z., Gao, S., Su, J., Lun, Z., Xia, G., Chen, J., Zhang, R. and Chen, Q., 2017. Tuning electronic structures of non-precious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catalysis, 7(1), 469–479.
  • Yıldırım, H. ve Arslan, H., 2019. CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 336-351.
  • Yıldırım, H. and Arslan, H., 2020. Size and composition effect on structural properties and melting behaviors of Cu-Ag-Au ternary nanoalloys. International Journal of Modern Physics C, 31(6), 2050078.
  • Zeng, L., Cui, X., Chen, L., Ye, T., Huang, W., Ma, R., Zhang, X. and Shi, J., 2017. Non-noble bimetallic alloy encased in nitrogen-doped nanotubes as a highly active and durable electrocatalyst for oxygen reduction reaction. Carbon, 114, 347-355.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Atomic, Molecular and Optical Physics
Journal Section Articles
Authors

Hüseyin Yıldırım 0000-0002-8554-3885

Publication Date October 31, 2021
Submission Date May 1, 2021
Published in Issue Year 2021

Cite

APA Yıldırım, H. (2021). Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik ve Manyetik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(5), 1027-1037. https://doi.org/10.35414/akufemubid.930848
AMA Yıldırım H. Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik ve Manyetik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. October 2021;21(5):1027-1037. doi:10.35414/akufemubid.930848
Chicago Yıldırım, Hüseyin. “Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik Ve Manyetik Özellikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 5 (October 2021): 1027-37. https://doi.org/10.35414/akufemubid.930848.
EndNote Yıldırım H (October 1, 2021) Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik ve Manyetik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 5 1027–1037.
IEEE H. Yıldırım, “Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik ve Manyetik Özellikleri”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 5, pp. 1027–1037, 2021, doi: 10.35414/akufemubid.930848.
ISNAD Yıldırım, Hüseyin. “Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik Ve Manyetik Özellikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/5 (October 2021), 1027-1037. https://doi.org/10.35414/akufemubid.930848.
JAMA Yıldırım H. Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik ve Manyetik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:1027–1037.
MLA Yıldırım, Hüseyin. “Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik Ve Manyetik Özellikleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 5, 2021, pp. 1027-3, doi:10.35414/akufemubid.930848.
Vancouver Yıldırım H. Co-M-Ni (M= Fe, Ag) Geçiş Metali Nanoalaşımlarının Yapısal, Enerjik ve Manyetik Özellikleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(5):1027-3.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.