Research Article
BibTex RIS Cite

MgO Nanopartiküllerinin Drosophila melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi

Year 2021, , 1283 - 1294, 31.12.2021
https://doi.org/10.35414/akufemubid.931922

Abstract

Günümüzde nanopartiküllerin üstün fizikokimyasal özelliklerinin belirlenmesinden sonra nanopartiküller ve nanoteknolojiye olan ilgi de hızlı bir şekilde artmış ve kullanım alanları da yaygınlaşmıştır. Üç fiziksel boyutundan en az biri 1-100 nm aralığında olan ve belirli nano-ölçekli özellikler gösterebilen maddeler olarak tanımlanan nanopartiküller, tıp, elektronik, kozmetik, çevresel temizlik gibi birçok farklı alanda yaygın kullanım alanına sahiptir. Bu yaygın kullanımdan dolayı insanların da nanopartiküllere olan maruziyeti gün geçtikçe artmaktadır. Ayrıca nanopartiküllerin çevreye yayılması doğada ki birçok canlı için risk oluşturmaktadır. Bu sebeple de nanopartiküllerin yol açabileceği olumlu/olumsuz biyolojik etkilerin anlaşılabilmesi için yapılan çalışmalar da hız kazanmıştır. Bu bağlamda yapılan çalışmada MgO nanopartiküllerinin farklı konsantrasyonlarının (2, 5 ve 10 mM) Drosophila melanogaster üzerindeki davranışsal toksisiteye etkisinin araştırılması amaçlanmıştır. Davranışsal toksisitenin belirlenmesinde larval ağırlık ve hareketi, ergin birey ağırlığı, pupa oluşturma başarısı, pupa pozisyonu, pupadan çıkış başarısı, negatif jeotaksis ve ömür uzunluğu deneyleri gerçekleştirilerek değerlendirilmiştir. Çalışma sonucunda MgO NP’lerinin genel olarak Drosophila melanogaster’da negatif bir etkiye neden olduğu tespit edilmiştir. Larval hareketin incelendiği deney kapsamında çalışma kapsamında en yüksek doz olarak belirlenen 10 mM’lık derişimin istatistiksel olarak anlamlı bir şekilde azalmaya neden olduğu tespit edilmiştir.

Supporting Institution

Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FYL-2016-1044

Thanks

Bu çalışma Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FYL-2016-1044 numaralı proje ile desteklenmiştir.

References

  • Alqahtani, S., Alomar, S.Y., 2016. Induction of apoptosis and cytokine markers in colon cancer cells by mahnesium oxide (MgO) nanoparticles. Toxicological & Environmental Chemistry, 99, 302-314.
  • Asmonaite, G., Boyer, S., de Souza, K.B., Wassmur, B. and Sturve, J., 2016. Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach. Aquatic Toxicology, 173, 143-153.
  • Baker, T.J., Tyler, C.R., Galloway, T.S., 2014. Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186, 257-271.
  • Benelmekki, M., 2015. Designing Hybrid Nanoparticles. Morgan & Claypool Publishers, 1-14.
  • Bernhardt, E.S., Colman, B.P., Hochella, M.F., Cardinale, B.J., Nisbet, R.M., Richardson, C.J., Yin, Liyan., 2010. An Ecological Perspective on Nanomaterial Impacts in the Environment. Journal of Environmental Quality, 39, 1-12.
  • Bhatt, I., Tripathi, B.N., 2011. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere, 82, 308-317.
  • Bindhu, M.R., Umadevi, M., Micheal, M.K., Arasu, M.V. and Al-Dhabi, N.A., 2016. Structural, morphological and optical properties of MgO nanoparticles for antibacterial application. Materials Letters, 166, 19-22.
  • Buffet, P., Tankoua, O.F., Pan, J., Berhanu, D., Herrenknecht, C., Poirier, L., Amiard-Triquet, C., Amiard, J., Berard, J., Risso, C., Guibboline, M., Romeo, M., Reip, P., Valsami-Jones, E. and Mouneyrac, C., 2011. Behavioural and biochemical responses of two morine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere, 84, 166-174.
  • Cai, L., Chen, J., Liu, Z., Wang, H., Yang, H., Ding, W., 2018. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum. Frontiers in Microbiology, 9.
  • Chen, J., Fan, R., Wang, Y., Huang, T., Shang, N., He, H., Zhang, P., Zhang, L., Niu, Q. and Zhang, Q., 2020. Progressive impairment of learning and memory in adult zebrafish treated by Al2O3 nanoparticles when in embryos. Chemosphere, 254, 126608.
  • Chen, T.H., Lin, C.C. and Meng, P.J., 2014. Zinc oxide nanoparticles alter hatching and larval activity in zebrafih (Danio rerio). Journal of Hazardous Materials, 277, 134-140.
  • De Matteis, V., 2017. Exposure to Inorganic Nanoparticles: Routes of Entry, Immune Response, Biodistribution and In Vitro/In Vivo Toxicity Evaluation. Toxics, 5, 29.
  • Demir, E., Akça, H., Kaya, B., Burgucu, D., Tokgün, O., Turna, F., Aksakal, S., Vales, G., Creus, A. and Marcos, R., 2014. Zinc oxide nanoparticles: Genotoxicity, interactions with UV-light and cell-trasnforming potential. Journal of Hazardous Materials, 264, 420-429.
  • Demir, E., Akça, H., Turna, F., Aksakal, S., Burgucu, D., Kaya, B., Tokgün, O., Vales, G., Creus, A. and Marcos, R., 2015. Genotoxic and cell-transforming effects of titanium dioxide nanoparticles. Environmental Research, 136, 300-308.
  • Dhar, G., Mukherjee, S., Nayak, N., Sahu, S., Bag, J., Rout, R. and Mishra, M., 2020. Fundamental Approaches to Screen Abnormalities in Drosophila. Mishra, M. Springer Protocols, 223-251.
  • Elsaesser, A. and Howard, C.V., 2012. Toxicology of nanoparticles. Advanced Drug Delivery Reviews 64, 129-137.
  • Ertuğrul, H., Yalçın, B., Güneş, M. and Kaya, B., 2020. Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug and Chemical Toxicology, 43, 279-286.
  • Fauzi, A., Zubaidah, S. and Susanto, H., 2020. The Study of Larva and Adult Behaviour of Drosophila melanogaster: Do Strains Affect Behavior?. AIP Conferance Proceedings, 2231, 040014.
  • Feynman, R.P., 1960. There’s Plenty of Room at the Bottom. Engineering and Science magazine, 23, 22-36.
  • Ge, S., Wang, G., Shen, Y., Zhang, Q., Jia, D., Wang, H., Dong, Q. and Yin, T., 2011. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. The Institution of Engineering and Technology, 5, 36-40.
  • Gerlof, K., Albrecht, C., Boots, A.W., Förster, I. and Schins, R.P.F., 2009. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology, 3, 355-364.
  • Giorgetti, L. 2019. Nanomaterials in Plants, Algae, and Microorganisms Concepts and Controversies: volume 2. Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K. and Dubey, N.K., Academic Press, 65-88.
  • Gunes, M., Yalcin, B., Ertugrul, H. and Kaya, B. 2018. Ascorbic Acid Ameliorates Genotoxic Effects of Cobalt Nanoparticles and Cobalt Chloride in In Vivo Drosophila Assays. Fresenius Environmental Bulletin, 27, 2380-2391.
  • Horie, M., Nishio, K., Fujita, K., Kato, H., Nakamura, A., Kinugasa, S., Endoh, S., Miyauchi, A., Yamamoto, K., Murayama, H., Niki, E., Iwahashi, H., Yoshida, Y. and Nakanishi, J., 2009. Ultrafine NiO Particles Induce Cytotoxicity in Vitro by Cellular Uptake and Subsequent Ni(II) Release. Chemical Research in Toxicology, 22, 1415-1426.
  • Horie, M., Shimizu, K. and Tabei, Y., 2018. Validation of metallothionein, interleukin-8, and heme oxygenase-1 as markers for evaluation of cytotoxicity caused by metal oxide nanoparticles. Toxicology Mechanisms and Methods, 28, 630-638.
  • Hwang, H.M., Ray, P.C., Yu, H. and He, X., 2012. Sustainable Preparation of Metal Nanoparticles: Methods and Applications. Luque, R. and Varma, R., Cambridge: Royal Society of Chemistry, 190-212.
  • Ivask, A., Titma, T., Visnapuu, M., Vija, H., Kakinen, A., Sihtmae, M., Pokhrel, S., Madler, L., Heinlaan, M., Kisand, V., Shimmo, R. and Kahru, A., 2015. Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types In Vitro. Current Topics in Medicinal Chemistry, 15, 1914-1929.
  • Jin, T. and He, Y., 2011. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research, 13, 6877-6885.
  • Karlsson, H.L., Cronholm, P., Gustafsson, J. and Möller, L., 2008. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chemical Research in Toxicology, 21, 1726-1732.
  • Kesmati, M., Konani, M., Torabi, M. and Khajehpour, L., 2016. Magnesium oxide nanoparticles reduce anxiety induced by morphine withdrawal in adult male mice. Physiology and Pharmacology, 20, 197-205.
  • Khan, I., Saeed, K. and Khan, I., 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908-931.
  • Knight, K. 2017. Fruit flies strengthen leg muscles when they gain weight. Journal of Experimental Biology, 220, 3399-3401.
  • Krishna, R.N., Gayathri, R. and Priya, V.D., 2017. Nanoparticles and Their Applications - A Review. Journal of Pharmaceutical Sciences and Research, 9(1), 24-27.
  • Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Muller, R.N., 2008. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 108, 2064-2110.
  • Li, X., Liu, B., Li, X., Li, Y., Sun, M., Chen, D., Zhao, X. and Feng, X., 2014. SiO2 nanoparticles change colour preference and cause Parkinson’s-like behaviour in zebrafish. Scientific Reports, 4, 3810.
  • Linford, N.J., Bilgir, C., Ro, J. and Pletcher, S.D. 2013. Measurement of Lifespan in Drosophila melanogaster. Journal of Visualized Experiments, 71.
  • Liu, Z., Shang, J., Yan, L., Wei, T., Xiang, L., Wang, H., Cheng, J. and Xiao, G., 2020. Oxidative stress caused by Lead (Pb) induces iron deficiency in Drosphila melanogaster. Chemosphere, 243, 139136.
  • Mahmoud, A. Öztaş, E., Arici, M. and Özhan, G., 2016. In Vitro Toxicological Assessment of Magnesium Oxide Nanoparticle Exposure in Several Mammalian Cell Types. International Journal of Toxicology, 35, 1-9.
  • Mangalampalli, B., Dumala, N. and Grover, P., 2018b. Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. Journal of Environmental Sciences, 66, 125-137.
  • Mangalampalli, B., Dumala, N. and Venkata, R.P., 2018a. Genotoxicity, biochemical and biodistribution studies of magnesium oxide nano and microparticles in albino wistar rats after 28-day repeated oral exposure. Environmental Toxicology, 33, 396-410.
  • Manickam, V., Dhakshinamoorthy, V. and Perumal, E., 2019. Iron Oxide Nanoparticles Affects Behaviour and Monoamine Levels in Mice. Neurochemical Research, 44, 1533-1548.
  • Manjila, S. B. and Hasan, G., 2018. Flight and Climbing Assay for Assessing Motor Functions in Drosophila. Bio-protocol, 8, e2742.
  • McClements, D.J. and Xiao, H., 2017. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. Science of Food, 1(6).
  • Philbert, M.A., 2010. Comprehensive Toxicology (Second Edition). McQueen, C.A., Elsevier Science, 337-350.
  • Min, K.W., Jang, T. and Lee, K.P., 2021. Thermal and nutritional environments during development exert different effects on adult reproductive success in Drosophila melanogaster. Ecology and Evolution, 11(1), 443-457.
  • Mittag, A., Schneider, T., Westermann, M. and Glei, M., 2019. Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells. Archives of Toxicology, 93, 1491-1500.
  • Nabika, H. and Unoura, K., 2016. Surface Chemistry of Nanobiomaterials. Grumezescu, A.M., William Andrew Publishing, 231-263.
  • Pompa, P.P., Vecchio, G., Galeone, A., Brunetti, V., Sabella, S., Maiorano, G., Falqui, A., Bertoni, G. and Cingolani, R., 2011. In Vivo Toxicity Assessment of Gold Nanoparticles in Drosophila melanogaster. Nano Research., 4(4), 405-413.
  • Rico, C.M., Majumdar, S., Gardea, M.D., Videa, J.R.P. and Torresdey, J.L.G., 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485-3498.
  • Schlider, R.J., Kimball, S.R., Marden, J.H. and Jefferson, L.S., 2011. Body weight-dependent troponin T alternative splicing is evolutionarily conserved from insects to mammals and is partially impaired in skeletal muscle of obese rats. The journal of Experimental Biology, 214, 1529-1532.
  • Schilder, R.J. and Raynor, M., 2017. Molecular plasticity and functional anhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster. The Company of Biologists, 220, 3508-3518.
  • Strambeanu, N., Demetrovici, L., Dragos, D., and Lungu, M., 2015. Nanoparticles’ Promises and Risks. Lungu, M., Springer International Publisihing, 3-8.
  • Suganthi, P., Murali, M., Bukhari, A.S., Mohamed, H.E.S., Basu, H. and Singhal, R.K., 2015. Behavioural and Histological variations in Oreochromis mossambicus after exposure to ZnO Nanoparticles. International Journal of Applied Research, 1(8), 524-531.
  • Truong, L., Saili, K.S., Miller, J.M., Hutchison, J.E. and Tanguay, R.L., 2012. Persistent Adult Zebrafish Behavioral Deficits Results from Acute Embryonic Exposure to Gold Nanoparticles. Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology, 155(2), 269-274.
  • USEPA(U.S. Enviromental Protection Agency, 2007. Nanotechnology White Paper. U.S. Enviromental Protection Agency, Washington, DC 20460.
  • Walczak, A.P., Fokkink, R., Peters, R., Tromp, P., Rivera, Z.E.H., Rietjens, I.M.C.M., Hendriksen, P.J.M. and Bouwmeester, H., 2013. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology, 7(7), 1198-1210.
  • Wilhelmi, V., Fischer, U., van Berlo, D., Schulze-Osthoff, K., Schins, R.PF. and Albrecht, C., 2012. Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: Facts and artefacts. Toxicology in Vitro, 26, 323-334.

Behavioral Toxicity Evaluation of MgO Nanoparticles on Drosophila melanogaster

Year 2021, , 1283 - 1294, 31.12.2021
https://doi.org/10.35414/akufemubid.931922

Abstract

Nowadays, after the determination of the superior physicochemical properties of nanoparticles, interest in nanoparticles and nanotechnology has increased rapidly and their usage areas have become widespread. Nanoparticles, which are defined as substances that have at least one of their three physical dimensions in the range of 1-100 nm and can show certain nanoscale properties, have a widespread use in many different fields such as medicine, electronics, cosmetics, environmental cleaning. Due to this widespread use, the exposure of humans to nanoparticles is increasing day by day. In addition, the spread of nanoparticles into the environment poses a risk to many living things in nature. For this reason, studies to understand the positive / negative biological effects that nanoparticles can cause have also gained momentum. In this context, it was aimed to investigate the effect of different concentrations of MgO nanoparticles (2, 5 and 10 mM) on behavioral toxicity on Drosophila melanogaster. In determining behavioral toxicity, larval weight and movement, adult weight, pupa formation success, pupal position, exit success, negative geotaxis and longevity tests were performed and evaluated. As a result of the study, it was determined that MgO NPs generally cause a negative effect on Drosophila melanogaster. Within the scope of the experiment in which the larval movement was examined, it was determined that the concentration of 10 mM, which was determined as the highest dose within the scope of the study, caused a statistically significant decrease.

Project Number

FYL-2016-1044

References

  • Alqahtani, S., Alomar, S.Y., 2016. Induction of apoptosis and cytokine markers in colon cancer cells by mahnesium oxide (MgO) nanoparticles. Toxicological & Environmental Chemistry, 99, 302-314.
  • Asmonaite, G., Boyer, S., de Souza, K.B., Wassmur, B. and Sturve, J., 2016. Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach. Aquatic Toxicology, 173, 143-153.
  • Baker, T.J., Tyler, C.R., Galloway, T.S., 2014. Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186, 257-271.
  • Benelmekki, M., 2015. Designing Hybrid Nanoparticles. Morgan & Claypool Publishers, 1-14.
  • Bernhardt, E.S., Colman, B.P., Hochella, M.F., Cardinale, B.J., Nisbet, R.M., Richardson, C.J., Yin, Liyan., 2010. An Ecological Perspective on Nanomaterial Impacts in the Environment. Journal of Environmental Quality, 39, 1-12.
  • Bhatt, I., Tripathi, B.N., 2011. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere, 82, 308-317.
  • Bindhu, M.R., Umadevi, M., Micheal, M.K., Arasu, M.V. and Al-Dhabi, N.A., 2016. Structural, morphological and optical properties of MgO nanoparticles for antibacterial application. Materials Letters, 166, 19-22.
  • Buffet, P., Tankoua, O.F., Pan, J., Berhanu, D., Herrenknecht, C., Poirier, L., Amiard-Triquet, C., Amiard, J., Berard, J., Risso, C., Guibboline, M., Romeo, M., Reip, P., Valsami-Jones, E. and Mouneyrac, C., 2011. Behavioural and biochemical responses of two morine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere, 84, 166-174.
  • Cai, L., Chen, J., Liu, Z., Wang, H., Yang, H., Ding, W., 2018. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum. Frontiers in Microbiology, 9.
  • Chen, J., Fan, R., Wang, Y., Huang, T., Shang, N., He, H., Zhang, P., Zhang, L., Niu, Q. and Zhang, Q., 2020. Progressive impairment of learning and memory in adult zebrafish treated by Al2O3 nanoparticles when in embryos. Chemosphere, 254, 126608.
  • Chen, T.H., Lin, C.C. and Meng, P.J., 2014. Zinc oxide nanoparticles alter hatching and larval activity in zebrafih (Danio rerio). Journal of Hazardous Materials, 277, 134-140.
  • De Matteis, V., 2017. Exposure to Inorganic Nanoparticles: Routes of Entry, Immune Response, Biodistribution and In Vitro/In Vivo Toxicity Evaluation. Toxics, 5, 29.
  • Demir, E., Akça, H., Kaya, B., Burgucu, D., Tokgün, O., Turna, F., Aksakal, S., Vales, G., Creus, A. and Marcos, R., 2014. Zinc oxide nanoparticles: Genotoxicity, interactions with UV-light and cell-trasnforming potential. Journal of Hazardous Materials, 264, 420-429.
  • Demir, E., Akça, H., Turna, F., Aksakal, S., Burgucu, D., Kaya, B., Tokgün, O., Vales, G., Creus, A. and Marcos, R., 2015. Genotoxic and cell-transforming effects of titanium dioxide nanoparticles. Environmental Research, 136, 300-308.
  • Dhar, G., Mukherjee, S., Nayak, N., Sahu, S., Bag, J., Rout, R. and Mishra, M., 2020. Fundamental Approaches to Screen Abnormalities in Drosophila. Mishra, M. Springer Protocols, 223-251.
  • Elsaesser, A. and Howard, C.V., 2012. Toxicology of nanoparticles. Advanced Drug Delivery Reviews 64, 129-137.
  • Ertuğrul, H., Yalçın, B., Güneş, M. and Kaya, B., 2020. Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug and Chemical Toxicology, 43, 279-286.
  • Fauzi, A., Zubaidah, S. and Susanto, H., 2020. The Study of Larva and Adult Behaviour of Drosophila melanogaster: Do Strains Affect Behavior?. AIP Conferance Proceedings, 2231, 040014.
  • Feynman, R.P., 1960. There’s Plenty of Room at the Bottom. Engineering and Science magazine, 23, 22-36.
  • Ge, S., Wang, G., Shen, Y., Zhang, Q., Jia, D., Wang, H., Dong, Q. and Yin, T., 2011. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. The Institution of Engineering and Technology, 5, 36-40.
  • Gerlof, K., Albrecht, C., Boots, A.W., Förster, I. and Schins, R.P.F., 2009. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology, 3, 355-364.
  • Giorgetti, L. 2019. Nanomaterials in Plants, Algae, and Microorganisms Concepts and Controversies: volume 2. Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K. and Dubey, N.K., Academic Press, 65-88.
  • Gunes, M., Yalcin, B., Ertugrul, H. and Kaya, B. 2018. Ascorbic Acid Ameliorates Genotoxic Effects of Cobalt Nanoparticles and Cobalt Chloride in In Vivo Drosophila Assays. Fresenius Environmental Bulletin, 27, 2380-2391.
  • Horie, M., Nishio, K., Fujita, K., Kato, H., Nakamura, A., Kinugasa, S., Endoh, S., Miyauchi, A., Yamamoto, K., Murayama, H., Niki, E., Iwahashi, H., Yoshida, Y. and Nakanishi, J., 2009. Ultrafine NiO Particles Induce Cytotoxicity in Vitro by Cellular Uptake and Subsequent Ni(II) Release. Chemical Research in Toxicology, 22, 1415-1426.
  • Horie, M., Shimizu, K. and Tabei, Y., 2018. Validation of metallothionein, interleukin-8, and heme oxygenase-1 as markers for evaluation of cytotoxicity caused by metal oxide nanoparticles. Toxicology Mechanisms and Methods, 28, 630-638.
  • Hwang, H.M., Ray, P.C., Yu, H. and He, X., 2012. Sustainable Preparation of Metal Nanoparticles: Methods and Applications. Luque, R. and Varma, R., Cambridge: Royal Society of Chemistry, 190-212.
  • Ivask, A., Titma, T., Visnapuu, M., Vija, H., Kakinen, A., Sihtmae, M., Pokhrel, S., Madler, L., Heinlaan, M., Kisand, V., Shimmo, R. and Kahru, A., 2015. Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types In Vitro. Current Topics in Medicinal Chemistry, 15, 1914-1929.
  • Jin, T. and He, Y., 2011. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research, 13, 6877-6885.
  • Karlsson, H.L., Cronholm, P., Gustafsson, J. and Möller, L., 2008. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chemical Research in Toxicology, 21, 1726-1732.
  • Kesmati, M., Konani, M., Torabi, M. and Khajehpour, L., 2016. Magnesium oxide nanoparticles reduce anxiety induced by morphine withdrawal in adult male mice. Physiology and Pharmacology, 20, 197-205.
  • Khan, I., Saeed, K. and Khan, I., 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908-931.
  • Knight, K. 2017. Fruit flies strengthen leg muscles when they gain weight. Journal of Experimental Biology, 220, 3399-3401.
  • Krishna, R.N., Gayathri, R. and Priya, V.D., 2017. Nanoparticles and Their Applications - A Review. Journal of Pharmaceutical Sciences and Research, 9(1), 24-27.
  • Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Muller, R.N., 2008. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 108, 2064-2110.
  • Li, X., Liu, B., Li, X., Li, Y., Sun, M., Chen, D., Zhao, X. and Feng, X., 2014. SiO2 nanoparticles change colour preference and cause Parkinson’s-like behaviour in zebrafish. Scientific Reports, 4, 3810.
  • Linford, N.J., Bilgir, C., Ro, J. and Pletcher, S.D. 2013. Measurement of Lifespan in Drosophila melanogaster. Journal of Visualized Experiments, 71.
  • Liu, Z., Shang, J., Yan, L., Wei, T., Xiang, L., Wang, H., Cheng, J. and Xiao, G., 2020. Oxidative stress caused by Lead (Pb) induces iron deficiency in Drosphila melanogaster. Chemosphere, 243, 139136.
  • Mahmoud, A. Öztaş, E., Arici, M. and Özhan, G., 2016. In Vitro Toxicological Assessment of Magnesium Oxide Nanoparticle Exposure in Several Mammalian Cell Types. International Journal of Toxicology, 35, 1-9.
  • Mangalampalli, B., Dumala, N. and Grover, P., 2018b. Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. Journal of Environmental Sciences, 66, 125-137.
  • Mangalampalli, B., Dumala, N. and Venkata, R.P., 2018a. Genotoxicity, biochemical and biodistribution studies of magnesium oxide nano and microparticles in albino wistar rats after 28-day repeated oral exposure. Environmental Toxicology, 33, 396-410.
  • Manickam, V., Dhakshinamoorthy, V. and Perumal, E., 2019. Iron Oxide Nanoparticles Affects Behaviour and Monoamine Levels in Mice. Neurochemical Research, 44, 1533-1548.
  • Manjila, S. B. and Hasan, G., 2018. Flight and Climbing Assay for Assessing Motor Functions in Drosophila. Bio-protocol, 8, e2742.
  • McClements, D.J. and Xiao, H., 2017. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. Science of Food, 1(6).
  • Philbert, M.A., 2010. Comprehensive Toxicology (Second Edition). McQueen, C.A., Elsevier Science, 337-350.
  • Min, K.W., Jang, T. and Lee, K.P., 2021. Thermal and nutritional environments during development exert different effects on adult reproductive success in Drosophila melanogaster. Ecology and Evolution, 11(1), 443-457.
  • Mittag, A., Schneider, T., Westermann, M. and Glei, M., 2019. Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells. Archives of Toxicology, 93, 1491-1500.
  • Nabika, H. and Unoura, K., 2016. Surface Chemistry of Nanobiomaterials. Grumezescu, A.M., William Andrew Publishing, 231-263.
  • Pompa, P.P., Vecchio, G., Galeone, A., Brunetti, V., Sabella, S., Maiorano, G., Falqui, A., Bertoni, G. and Cingolani, R., 2011. In Vivo Toxicity Assessment of Gold Nanoparticles in Drosophila melanogaster. Nano Research., 4(4), 405-413.
  • Rico, C.M., Majumdar, S., Gardea, M.D., Videa, J.R.P. and Torresdey, J.L.G., 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485-3498.
  • Schlider, R.J., Kimball, S.R., Marden, J.H. and Jefferson, L.S., 2011. Body weight-dependent troponin T alternative splicing is evolutionarily conserved from insects to mammals and is partially impaired in skeletal muscle of obese rats. The journal of Experimental Biology, 214, 1529-1532.
  • Schilder, R.J. and Raynor, M., 2017. Molecular plasticity and functional anhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster. The Company of Biologists, 220, 3508-3518.
  • Strambeanu, N., Demetrovici, L., Dragos, D., and Lungu, M., 2015. Nanoparticles’ Promises and Risks. Lungu, M., Springer International Publisihing, 3-8.
  • Suganthi, P., Murali, M., Bukhari, A.S., Mohamed, H.E.S., Basu, H. and Singhal, R.K., 2015. Behavioural and Histological variations in Oreochromis mossambicus after exposure to ZnO Nanoparticles. International Journal of Applied Research, 1(8), 524-531.
  • Truong, L., Saili, K.S., Miller, J.M., Hutchison, J.E. and Tanguay, R.L., 2012. Persistent Adult Zebrafish Behavioral Deficits Results from Acute Embryonic Exposure to Gold Nanoparticles. Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology, 155(2), 269-274.
  • USEPA(U.S. Enviromental Protection Agency, 2007. Nanotechnology White Paper. U.S. Enviromental Protection Agency, Washington, DC 20460.
  • Walczak, A.P., Fokkink, R., Peters, R., Tromp, P., Rivera, Z.E.H., Rietjens, I.M.C.M., Hendriksen, P.J.M. and Bouwmeester, H., 2013. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology, 7(7), 1198-1210.
  • Wilhelmi, V., Fischer, U., van Berlo, D., Schulze-Osthoff, K., Schins, R.PF. and Albrecht, C., 2012. Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: Facts and artefacts. Toxicology in Vitro, 26, 323-334.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Articles
Authors

Ayşen Yağmur Kurşun 0000-0003-1657-6808

Burcin Yalcin 0000-0002-9694-5839

Merve Güneş 0000-0003-3278-0542

Ghada Tagorti This is me 0000-0003-4597-8320

Bülent Kaya 0000-0002-0491-9781

Project Number FYL-2016-1044
Publication Date December 31, 2021
Submission Date May 3, 2021
Published in Issue Year 2021

Cite

APA Kurşun, A. Y., Yalcin, B., Güneş, M., Tagorti, G., et al. (2021). MgO Nanopartiküllerinin Drosophila melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(6), 1283-1294. https://doi.org/10.35414/akufemubid.931922
AMA Kurşun AY, Yalcin B, Güneş M, Tagorti G, Kaya B. MgO Nanopartiküllerinin Drosophila melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2021;21(6):1283-1294. doi:10.35414/akufemubid.931922
Chicago Kurşun, Ayşen Yağmur, Burcin Yalcin, Merve Güneş, Ghada Tagorti, and Bülent Kaya. “MgO Nanopartiküllerinin Drosophila Melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 6 (December 2021): 1283-94. https://doi.org/10.35414/akufemubid.931922.
EndNote Kurşun AY, Yalcin B, Güneş M, Tagorti G, Kaya B (December 1, 2021) MgO Nanopartiküllerinin Drosophila melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 6 1283–1294.
IEEE A. Y. Kurşun, B. Yalcin, M. Güneş, G. Tagorti, and B. Kaya, “MgO Nanopartiküllerinin Drosophila melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 6, pp. 1283–1294, 2021, doi: 10.35414/akufemubid.931922.
ISNAD Kurşun, Ayşen Yağmur et al. “MgO Nanopartiküllerinin Drosophila Melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/6 (December 2021), 1283-1294. https://doi.org/10.35414/akufemubid.931922.
JAMA Kurşun AY, Yalcin B, Güneş M, Tagorti G, Kaya B. MgO Nanopartiküllerinin Drosophila melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:1283–1294.
MLA Kurşun, Ayşen Yağmur et al. “MgO Nanopartiküllerinin Drosophila Melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 6, 2021, pp. 1283-94, doi:10.35414/akufemubid.931922.
Vancouver Kurşun AY, Yalcin B, Güneş M, Tagorti G, Kaya B. MgO Nanopartiküllerinin Drosophila melanogaster Üzerindeki Davranışsal Toksisitesinin Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(6):1283-94.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.