BibTex RIS Cite

Optimization of Synthesis Conditions of Poly(N-Vinylcaprolactam) Microgels

Year 2014, Volume: 14 Issue: 1, 13 - 21, 01.04.2014

Abstract

In this study, we aimed to synthesis and characterization of poly (N-vinyl caprolactam) microgels. The synthesis of microgels was performed via free radical polymerization with emulsion polymerization technique in aqueous media. Four different microgels were synthesized in order to determine the effect of usage of different initiator and different reaction temperatures. Two different type initiators were used for microgel synthesis reactions such as 2,2'-azobisisobutyronitrile (AIBN) and 2,2’-azobis(2methylpropionamidine)dihydrochloride (AMPA). Microgels were synthesized in two different temperatures such as 70 and 80oC in presence of AIBN or AMPA. Then, product yields (reaction efficiency) of all microgels were determined. Structural analyses of microgels were carried out using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). In addition, zeta potentials and particle size distributions of all microgels were determined. According to results, the highest product yields were obtained from reaction which is used AMPA as initiator at 70oC reaction temperature. © Afyon Kocatepe Üniversitesi

References

  • Bardley, M., Davies, P., Vincent, B., 2009. Highlights in Colloid Science, Chapter 2 (Uptake and release of active species into and from microgel particles), Eds.: Platikanov, D., Exerowa, D., Wiley-VCH Verlag GmbH&Co.KGaA, Weinheim.
  • Boutris C., Chatzi E. G., Kiparissides C., 1997. Characterization of the LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques, Polymer, 38, 2567 -2570.
  • vinylcaprolactam - microgels: 1-synthesis methacrylate) characterization, Polymer, 44, 7821–7827. and
  • Byrne, M.E., Park, K., Peppas, N.A., 2002. Molecular imprinting within hydrogels, Adv. Drug. Deliv. Rev., 54, 149-161.
  • Chen, K., Merkel, T.J., Pandya, A., Napier, M.E., Luft, J.C., Daniel, W., Sheiko, S., DeSimone, J.M., 2012. Low modulus biomimetic microgel particles with high loading of hemoglobin, Biomacromol., 13, 2748-2759.
  • Crespy, D., Rossi, R.M., 2007. Temperature- responsive polymers with LCST in the physiological range and their applications in textiles, Polym. Int., 56, 461–1468.
  • Denizli, A., Garipcan, B., Karabakan, A., Şenöz, H., 2005. Synthesis and characterization of poly(hydroxyethyl methacryloyl-(l)-glutamic acid) copolymer beads for removal of lead ions, Mater. Sci. Eng. C, 25, 448–454. methacrylate-N
  • Deepika, P., 2011. Poly (N-isopropylacrylamide) microgels for organic dye removal from water, ACS Appl. Mater. Interfaces, 3, 2732-2737.
  • ElamKssari, A., Bourrel, V., 2001. Thermosensitive magnetic latex particles for controlling protein adsorption and desorption, J. Magn. Magn. Mater., 225, 151-155.
  • Fernandez-Barbero, A., Suarez, I.J., Sierra-Martin, B., Fernandez-Nieves, A., Javier de las Nieves, F., Fu, H., Kobayashi, T., 2010. Self-assembly functionalized microsphere/polyacrylic acid layers and its application for metal ion removal, J. Mater. Sci., 45, 6694–6700. with chitosan
  • Gök, M.K., 2013. Doğal ve Sentetik Biyouyumlu Polimerik Sistemlerin Elde Edilmesi ve Transfeksiyon Gen Taşıyıcı
  • Boyko V., Pich A., Lu Y., Richter S., Arndt K.F., Adler H.J.P., 2003. Thermo-sensitive poly(N
  • Etkinliğinin İncelenmesi, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 150.
  • Hellweg, T., Dewhurst, C.T., Brückner, E., Kratz, K., Eimer, W., 2000. Colloidal crystals made of poly(N-isopropylacrylamide) microgel particles, Colloid Polym. Sci., 278, 972-978.
  • Hunter, R.J., 1988. Zeta Potential in Colloid Science: Principles and Applications, Academic Press, London.
  • Kabra, B.G., Gehrke, S.H., Spontak, R.J., 1998. Responsive Cellulose Gels. 1. Synthesis and Microstructure, Macromolecules, 31, 2166-2173. Hydroxypropyl
  • Kavaz, D., 2011. Nanopartiküller, Nanobülten, Aylık Nanoteknoloji Ve Nanotıp Dergisi, 13, 12-19.
  • Lin C.L., Chiu W.Y., Lee C.F., 2006. Preparation, Morphology, and Thermoresponsive Properties of Copolymer Microgels, Journal of Polymer Science: Part A: Polymer Chemistry, 44, 356– 370.
  • Malmsten, M., 2011. Microgel Suspensions: Fundamentals and Applications, Chapter 15 (Microgels in Drug Delivery), Eds.: Fernandez- Nieves, A., Wyss, H.M., Mattsson, J., Weitz, D.A., Wiley-VCH Verlag GmbH & Co. KGaA, 375-405.
  • Marquez, M., Rubio-Retama, J., Lopez-Caparcos, E., 2009. Gels and microgels for nanotechnological applications, Adv. Colloid Interface Sci., 147, 88- 108.
  • Mohammadpour D.N., Eskandari, R., Avadi, M.R., Zolfagharian, H., Mir Mohammad S.A., Rezayat, M., characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system, J. Venom. Anim. Toxins incl. Trop. Dis., 18, 44-52. in vitro
  • Özkahraman, B., Acar, I., Güçlü, G., 2011. Mikrojeller ve Uygulama Alanları, Nanoteknoloji Günleri, Kocaeli Üniversitesi, 7-8 Mayıs, Kocaeli.
  • Panayitou M., Pohner C., Vandevyver C., 2007. Synthesis thermoresponsive poly(N,N'diethylacrylamide) microgels, React. Funct. Polym., 67, 807-819. of
  • Peppas, N.A., 1987. Hydrogels in Medicine and Pharmacy, CRC Press, Florida.
  • Phadtare, S., Vinod, V.P., Mukhopadhyay, K., Kumar, A., Rao, M., Chaudhari, R.V., Sastry, M., 2004. Immobilization and biocatalytic activity of fungal protease on gold nanoparticle-loaded zeolite microspheres, Biotechnol. Bioeng., 85, 629-637.
  • Rubio, R.J., López, C.E., Mecerreyes, D, López-Ruiz, B., 2004. Design of an amperometric biosensor using containing Bioelectron., 20, 1111-1117. composites glucose oxidase, Biosens.
  • Saunders, B.R., Laajam, N., Daly, E., Teow, S., Hu, X., Stepto, R., 2008. “Microgels: From responsive polymer colloids to biomaterials, Adv. Colloid Interface Sci., 147, 251-262.
  • Silverstein R.M., Bassler, G.C., 1966. Spectrometric Identification of Organic Compounds, 4th ed., John Wiley, New York.
  • Soppimath, K.S., Kulkarni, A.R., Aminabhavi, T.M., 2001. Chemically modified polyacrylamide-g- guar gum-based crosslinked anionic microgels as preparation and characterization, J. Control. Release, 75, 331–345. delivery systems:
  • Suzuki D., Yoshida R., 2008. Temporal Control of Self-Oscillation for Microgels by Cross-Linking Network Structure, Macromolecules, 41, 5830- 5838.
  • Tan, J.P., Tam, K.C., 2007. Application of drug selective electrode in the drug release study of pH-responsive microgels, J. Control. Release, 118, 87–94.
  • Tripathi, A., Gupta, R., Saraf, S.A., 2010. PLGA nanoparticles of anti tubercular drug: drug loading and release studies of a water ın-soluble drug, Int. J. PharmTech. Res., 2, 2116-2123.
  • Vinogradov, S.V., 2006. Colloidal microgels in drug delivery applications, Curr. Pharm. Des., 12, 4703-4712.
  • Yin, J., Dupin D., Li, J., Armes, S.P., Liu, S., 2008. pH- induced deswelling kinetics of sterically stabilized probed by stopped-flow light scattering,
  • Langmuir, 24, 9334-9340. microgels

Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu

Year 2014, Volume: 14 Issue: 1, 13 - 21, 01.04.2014

Abstract

Bu çalışmada, poli(N-vinil kaprolaktam) mikrojellerinin sentezi ve karakterizasyonu gerçekleştirilmiştir. Mikrojellerin sentezi, sulu ortamda serbest radikal katılma polimerizasyonu ile emülsiyon polimerizasyonu tekniğine göre yapılmıştır. Farklı türde başlatıcı kullanımının ve farklı reaksiyon sıcaklıklarının etkisini belirleyebilmek amacıyla dört farklı mikrojel sentezlenmiştir. Mikrojellerin sentezinde başlatıcı olarak; 2,2’-azobisbütironitril (AIBN) ve 2,2’-azobis(2-metilpropionamid) dihidroklorür (AMPA) kullanılmıştır. Mikrojeller, AIBN veya AMPA başlatıcıları varlığında 70oC ve 80oC olmak üzere iki farklı sıcaklıkta sentezlenmiştir. Takiben sentezlenen tüm mikrojellerin reaksiyon verimleri belirlenmiştir. Elde edilen polimerlerin yapısal analizi, Fourier Transform Infrared Spektroskopisi (FTIR) ve Taramalı Elektron Mikroskobu (SEM) kullanılarak gerçekleştirilmiştir. Ayrıca tüm mikrojel ürünlerin, zeta potansiyeli ve partikül boyutu dağılımı ölçümleri yapılmıştır. Çalışmada elde edilen sonuçlara göre, sentez reaksiyonları, AMPA başlatıcısı varlığında ve 70oC sıcaklığında gerçekleştirildiğinde en yüksek reaksiyon verimi elde edilmiştir

References

  • Bardley, M., Davies, P., Vincent, B., 2009. Highlights in Colloid Science, Chapter 2 (Uptake and release of active species into and from microgel particles), Eds.: Platikanov, D., Exerowa, D., Wiley-VCH Verlag GmbH&Co.KGaA, Weinheim.
  • Boutris C., Chatzi E. G., Kiparissides C., 1997. Characterization of the LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques, Polymer, 38, 2567 -2570.
  • vinylcaprolactam - microgels: 1-synthesis methacrylate) characterization, Polymer, 44, 7821–7827. and
  • Byrne, M.E., Park, K., Peppas, N.A., 2002. Molecular imprinting within hydrogels, Adv. Drug. Deliv. Rev., 54, 149-161.
  • Chen, K., Merkel, T.J., Pandya, A., Napier, M.E., Luft, J.C., Daniel, W., Sheiko, S., DeSimone, J.M., 2012. Low modulus biomimetic microgel particles with high loading of hemoglobin, Biomacromol., 13, 2748-2759.
  • Crespy, D., Rossi, R.M., 2007. Temperature- responsive polymers with LCST in the physiological range and their applications in textiles, Polym. Int., 56, 461–1468.
  • Denizli, A., Garipcan, B., Karabakan, A., Şenöz, H., 2005. Synthesis and characterization of poly(hydroxyethyl methacryloyl-(l)-glutamic acid) copolymer beads for removal of lead ions, Mater. Sci. Eng. C, 25, 448–454. methacrylate-N
  • Deepika, P., 2011. Poly (N-isopropylacrylamide) microgels for organic dye removal from water, ACS Appl. Mater. Interfaces, 3, 2732-2737.
  • ElamKssari, A., Bourrel, V., 2001. Thermosensitive magnetic latex particles for controlling protein adsorption and desorption, J. Magn. Magn. Mater., 225, 151-155.
  • Fernandez-Barbero, A., Suarez, I.J., Sierra-Martin, B., Fernandez-Nieves, A., Javier de las Nieves, F., Fu, H., Kobayashi, T., 2010. Self-assembly functionalized microsphere/polyacrylic acid layers and its application for metal ion removal, J. Mater. Sci., 45, 6694–6700. with chitosan
  • Gök, M.K., 2013. Doğal ve Sentetik Biyouyumlu Polimerik Sistemlerin Elde Edilmesi ve Transfeksiyon Gen Taşıyıcı
  • Boyko V., Pich A., Lu Y., Richter S., Arndt K.F., Adler H.J.P., 2003. Thermo-sensitive poly(N
  • Etkinliğinin İncelenmesi, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 150.
  • Hellweg, T., Dewhurst, C.T., Brückner, E., Kratz, K., Eimer, W., 2000. Colloidal crystals made of poly(N-isopropylacrylamide) microgel particles, Colloid Polym. Sci., 278, 972-978.
  • Hunter, R.J., 1988. Zeta Potential in Colloid Science: Principles and Applications, Academic Press, London.
  • Kabra, B.G., Gehrke, S.H., Spontak, R.J., 1998. Responsive Cellulose Gels. 1. Synthesis and Microstructure, Macromolecules, 31, 2166-2173. Hydroxypropyl
  • Kavaz, D., 2011. Nanopartiküller, Nanobülten, Aylık Nanoteknoloji Ve Nanotıp Dergisi, 13, 12-19.
  • Lin C.L., Chiu W.Y., Lee C.F., 2006. Preparation, Morphology, and Thermoresponsive Properties of Copolymer Microgels, Journal of Polymer Science: Part A: Polymer Chemistry, 44, 356– 370.
  • Malmsten, M., 2011. Microgel Suspensions: Fundamentals and Applications, Chapter 15 (Microgels in Drug Delivery), Eds.: Fernandez- Nieves, A., Wyss, H.M., Mattsson, J., Weitz, D.A., Wiley-VCH Verlag GmbH & Co. KGaA, 375-405.
  • Marquez, M., Rubio-Retama, J., Lopez-Caparcos, E., 2009. Gels and microgels for nanotechnological applications, Adv. Colloid Interface Sci., 147, 88- 108.
  • Mohammadpour D.N., Eskandari, R., Avadi, M.R., Zolfagharian, H., Mir Mohammad S.A., Rezayat, M., characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system, J. Venom. Anim. Toxins incl. Trop. Dis., 18, 44-52. in vitro
  • Özkahraman, B., Acar, I., Güçlü, G., 2011. Mikrojeller ve Uygulama Alanları, Nanoteknoloji Günleri, Kocaeli Üniversitesi, 7-8 Mayıs, Kocaeli.
  • Panayitou M., Pohner C., Vandevyver C., 2007. Synthesis thermoresponsive poly(N,N'diethylacrylamide) microgels, React. Funct. Polym., 67, 807-819. of
  • Peppas, N.A., 1987. Hydrogels in Medicine and Pharmacy, CRC Press, Florida.
  • Phadtare, S., Vinod, V.P., Mukhopadhyay, K., Kumar, A., Rao, M., Chaudhari, R.V., Sastry, M., 2004. Immobilization and biocatalytic activity of fungal protease on gold nanoparticle-loaded zeolite microspheres, Biotechnol. Bioeng., 85, 629-637.
  • Rubio, R.J., López, C.E., Mecerreyes, D, López-Ruiz, B., 2004. Design of an amperometric biosensor using containing Bioelectron., 20, 1111-1117. composites glucose oxidase, Biosens.
  • Saunders, B.R., Laajam, N., Daly, E., Teow, S., Hu, X., Stepto, R., 2008. “Microgels: From responsive polymer colloids to biomaterials, Adv. Colloid Interface Sci., 147, 251-262.
  • Silverstein R.M., Bassler, G.C., 1966. Spectrometric Identification of Organic Compounds, 4th ed., John Wiley, New York.
  • Soppimath, K.S., Kulkarni, A.R., Aminabhavi, T.M., 2001. Chemically modified polyacrylamide-g- guar gum-based crosslinked anionic microgels as preparation and characterization, J. Control. Release, 75, 331–345. delivery systems:
  • Suzuki D., Yoshida R., 2008. Temporal Control of Self-Oscillation for Microgels by Cross-Linking Network Structure, Macromolecules, 41, 5830- 5838.
  • Tan, J.P., Tam, K.C., 2007. Application of drug selective electrode in the drug release study of pH-responsive microgels, J. Control. Release, 118, 87–94.
  • Tripathi, A., Gupta, R., Saraf, S.A., 2010. PLGA nanoparticles of anti tubercular drug: drug loading and release studies of a water ın-soluble drug, Int. J. PharmTech. Res., 2, 2116-2123.
  • Vinogradov, S.V., 2006. Colloidal microgels in drug delivery applications, Curr. Pharm. Des., 12, 4703-4712.
  • Yin, J., Dupin D., Li, J., Armes, S.P., Liu, S., 2008. pH- induced deswelling kinetics of sterically stabilized probed by stopped-flow light scattering,
  • Langmuir, 24, 9334-9340. microgels
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Bengi Özkahraman This is me

İşıl Acar This is me

Mehmet Koray Gök This is me

Gamze Güçlü This is me

Publication Date April 1, 2014
Submission Date August 8, 2015
Published in Issue Year 2014 Volume: 14 Issue: 1

Cite

APA Özkahraman, B., Acar, İ., Gök, M. K., Güçlü, G. (2014). Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 14(1), 13-21.
AMA Özkahraman B, Acar İ, Gök MK, Güçlü G. Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2014;14(1):13-21.
Chicago Özkahraman, Bengi, İşıl Acar, Mehmet Koray Gök, and Gamze Güçlü. “Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 14, no. 1 (April 2014): 13-21.
EndNote Özkahraman B, Acar İ, Gök MK, Güçlü G (April 1, 2014) Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 14 1 13–21.
IEEE B. Özkahraman, İ. Acar, M. K. Gök, and G. Güçlü, “Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 14, no. 1, pp. 13–21, 2014.
ISNAD Özkahraman, Bengi et al. “Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 14/1 (April 2014), 13-21.
JAMA Özkahraman B, Acar İ, Gök MK, Güçlü G. Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2014;14:13–21.
MLA Özkahraman, Bengi et al. “Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 14, no. 1, 2014, pp. 13-21.
Vancouver Özkahraman B, Acar İ, Gök MK, Güçlü G. Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2014;14(1):13-21.