Year 2017, Volume 17 , Issue 1, Pages 247 - 256 2017-04-24

Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey)

Tamer RIZAOĞLU [1]


The alkali-silica reactivity is one of the most important problems that can occur in concrete structures.
Because of their wide spectrum of mineralogical compositions and phases, volcanic rocks are more
likely to cause alkali-silica reactivity. In this study, alkali-silica reactivity potentials of the rocks
representing the upper levels of the crustal section of the Late Cretaceous suprasubduction-type
Göksun ophiolite in the Tauride ophiolitic belt have been investigated. The Göksun ophiolite displays
and intact ophiolite pseudostratigraphy with the thick layer of volcanic section characterized by a
different composition of rock units such as basalt, basaltic-andesite, andesite, dacite and rhyolite.
Firstly, the petrographic determinations of the samples derived from these volcanic units were made
and then geochemical analyzes carried o ut o n t he s ame s pecimens t o c ontrol t he a ccuracy o f t he
petrographic analyzes and the rocks were classified according to trace elements. Finally, the
accelerated mortar bar method was applied on the concrete bars produced from same rock samples to
compare the variation of Alkali-Silica Reactivity (ASR) with lithology. The test results yielded that the
intermediate volcanics have much Alkali Silica Reactivity (ASR) potential than basic and acidic volcanics
(basalts, rhyolites and dacites). It is estimated that the glassy matrix of the intermediate volcanics is
partly responsible for the alkali-silica reactivity. SiO2, TiO2, Al2O3, Na2O a nd K 2O values have show
positive correlation with the amounts of expansion in the andesite and basaltic andesites, whereas the
major oxide contents of acidic and basic volcanic rocks have no clear relation with the expansion ratios.
Ophiolite; volcanic, aggregate, Alkali-silica reactivity, Accelerated mortar bar method
  • Adam, J. T., 2004. Potential concrete aggregate reactivity in northern Nevada (Master's thesis paper). UMI Microform Number: 1420180, University of Nevada, Reno, NV.
  • ASTM C1260-07.,2009. Standard Test Method forPotential Alkali Reactivity of Aggregates (Mortar-BarMethod), 2009 ASTM Annual Book of Standards, Volume 04.02, Concrete and Aggregates, ASTM International, West Conshohocken, Pennsylvania,
  • Binici, H., Temiz, H., Sevinç, A.H., Eken,M., Kara, M., and Şayir, Z., 2013. Alüminyum Talaşı, Bims ve Gazbeton Tozu İçeren Betonların Yüksek Sıcaklık Etkisinin İncelenmesi. Electronic Journal of Construction Technologies, 9(1),1-15
  • Çopuroğlu, O., Andiç-Çakır, Ö., Broekmans, M.A.T.M., and Kühnel, R., 2009. Mineralogy, geochemistry and expansion testing of an alkali-reactive basalt from western Anatolia, Turkey. Materials Characterization, 60, 756-766.
  • Farny, J. And Kerkhoff, B., 2007. Diagnosis and Control of Alkali-Aggregate Reactions in Concrete, IS413, Portland Cement Association, Skokie, Illinois, USA,2007, 26 pages.
  • Grattan-Bellew, P.E., Beaudoin, J.J. and Valle´e, V.G., 1998. Effect of aggregate particle size and composition on expansion of mortar bars due to delayed ettringite formation, Cem. Concr. Res. 28 (8), 1147–1156.
  • Ikeda, T., Kawabata, Y., Hamada, H., and Sagawa, Y., 2008. Alkali-silica reactivity of andesite in NaCl saturated solution. Proceedings of the International Conference on Durability of Concrete Structures, 1, 563-569.
  • Islam, M. S., Ghafoori, N., 2013. Evaluation of Alkali-Silica Reactivity Using Aggregate Geology, Expansion Limits of Mortar Bars and Concrete Prisms, and Kinetic Model. Journal of Materials Science Research. 2(2):103-117.
  • Juteau, T., 1980. Ophiolites of Turkey. Ophioliti, 2, 199-205.
  • Katayama, T., St John, D. A. and Futagawa, T., 1989. The petrographic comparison of rocks from Japan and New Zealand—Potential reactivity related to interstitial glass and silica minerals, in: K. Okada, S. Nishibayashi, M. Kawamura (Eds.), 8th International Conference on Alkali– Aggregate Reaction, Elsevier, London,, pp. 537–541.
  • Kawabata, Y Yamada,K., Matsushita, H., 2008. Alkali-silica reactivity and expansion of mortar incorporating glassy andesite in alkaline solution, in: M.A.T.M. Broekmans, B.J. Wigum (Eds.), Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), Trondheim, Norway, pp. 874–883.
  • Ketin, İ., 1983. Türkiye Jeolojisine Genel Bir Bakış. İTÜ Kütüphanesi,1259, 595s.
  • Korkanç, M. and Tuğrul, A., 2005. Evaluation of selected basalts from the point of alkali–silica reactivity. Cement and Concrete Research 35, 505– 512
  • Marfil, S.A. and Maiza, P.J., 2001. Deteriorated pavements due to the alkali– silica reaction: A petrographic study of three cases in Argentina, Cem. Concr. Res. 31 (7), 1017– 1021.
  • MTA, 2002. 1/500.000 Türkiye Jeoloji Haritası. General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Parlak, O.,Höck, V., Kozlu, H. And Delaloye, M.2004. Oceanic crust generation in an island arc tectonic setting, SE Anatolian Orogenic Belt (Turkey).Geological Magazine, 141, 583–603
  • Pearce, J.A., 1996. A users guide to basalt discrimination diagrams. In: Wyman, D.A.(ed.), Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, ShortCourse Notes, 12, 79-113.
  • Rızaoğlu, T., Parlak, O. and İşler, F., 2005. Geochemistry and tectonic significance of Esence granitoid (Göksun–Kahramanmaraş), SE Turkey. Yerbilimleri, 26, 1–13.
  • Shahidulislam, M. and Akhtar, S., 2013. A Critical Assessment to the Performance of Alkali-Silica Reaction (ASR) in Concrete. Canadian Chemical Transactions, 1(4), 253-266
  • St John, D.A., 1988. Alkali– aggregate reaction and synopsis of other data, N.Z. Concr. Constr. 32, 7– 14.
  • Swamy, R. N., 1992. The alkali-silica reaction in concrete. Blackie and Son Ltd., Glasgow, London. http://dx.doi.org/10.4324/9780203332641
  • Thomas, M. D. A., Fournier, B., Folliard, J., Ideker, J., and Resendez, Y. 2007. The use of lithium to prevent or mitigate alkali-silica reaction in concrete pavements and structures. U.S. Department of Transportation, Publication No. FHWA-HRT-06-133, 47.
  • Tuthill, L. (1982). Alkali-silica reaction - 40 years later. Concrete International, 32-36.
  • Yılmaz, Y., 1993. New Evidence and Model on the Evolution of the Southeast Anatolian Orogen. Geological Society of America Bulletin, 105, 251-71.
  • Yılmaz, Y., 1990. Allochthonous terranes in the Tethyan Middle east: Anatolia and surrounding regions. Philosophical Transactions of Royal Society of London, A 331, 611-24.
  • Yılmaz, Y., Yiğitbaş, E., and Genç, Ş.C., 1993. Ophiolitic and metamorphic assemblages of Southeast Anatolia and their significance in the geological evolution of the orogenic belt. Tectonics, 12 (5), 1280-1297.
  • Wakizaka,Y., 2000. Alkali-silica reacktivity of Japanese rocks, Eng. Geol. 56(1-2), 211-221.
Primary Language en
Journal Section Articles
Authors

Author: Tamer RIZAOĞLU

Dates

Application Date : July 3, 2016
Publication Date : April 24, 2017

Bibtex @research article { akufemubid516958, journal = {Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi}, issn = {}, eissn = {2149-3367}, address = {}, publisher = {Afyon Kocatepe University}, year = {2017}, volume = {17}, pages = {247 - 256}, doi = {}, title = {Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey)}, key = {cite}, author = {RIZAOĞLU, Tamer} }
APA RIZAOĞLU, T . (2017). Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi , 17 (1) , 247-256 . Retrieved from https://dergipark.org.tr/en/pub/akufemubid/issue/43198/516958
MLA RIZAOĞLU, T . "Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey)". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17 (2017 ): 247-256 <https://dergipark.org.tr/en/pub/akufemubid/issue/43198/516958>
Chicago RIZAOĞLU, T . "Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey)". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17 (2017 ): 247-256
RIS TY - JOUR T1 - Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey) AU - Tamer RIZAOĞLU Y1 - 2017 PY - 2017 N1 - DO - T2 - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi JF - Journal JO - JOR SP - 247 EP - 256 VL - 17 IS - 1 SN - -2149-3367 M3 - UR - Y2 - 2017 ER -
EndNote %0 Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey) %A Tamer RIZAOĞLU %T Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey) %D 2017 %J Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi %P -2149-3367 %V 17 %N 1 %R %U
ISNAD RIZAOĞLU, Tamer . "Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey)". Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17 / 1 (April 2017): 247-256 .
AMA RIZAOĞLU T . Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017; 17(1): 247-256.
Vancouver RIZAOĞLU T . Alkali-Silica Reaction Potential of Arc-related Volcanic Rocks from the Göksun Ophiolite (Kahramanmaraş-Turkey). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2017; 17(1): 256-247.