Research Article
BibTex RIS Cite

İzotropik 3‐Uzayda Yüzeyler Üzerine Sınıflandırma Sonuçları

Year 2016, Volume: 16 Issue: 2, 239 - 246, 30.04.2016

Abstract

İzotropik 3‐uzay 􀥴􀬷 Cayley‐Klein uzaylarından biridir ve Öklidyen uzayda standart Öklidyen uzaklık ile
izotropik uzaklığın değişiminden elde edilir. Bu çalışmada, 􀥴􀬷 uzayında, sabit relatif (izotropik Gauss) ve
sabit izotropik ortalama eğrilikli yüzeyler üzerine çeşitli sınıflandırmalar ifade edilmiştir. Özel olarak, 􀥴􀬷
uzayında sabit eğrilikli helikoidal yüzeyler sınıflandırılıp, bu yüzeyler üzerinde bazı özel eğriler analiz
edilmiştir.

References

  • Arvanitoyeorgos, A., Kaimakamis, G., 2010. Helicoidal surfaces in the Heisenberg 3‐space. JP Geometry and Topology, 10(1), 1‐10.
  • Aydin, M.E., 2015. A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom., DOI 10.1007/s00022‐015‐0292‐0.
  • Aydin, M.E., Mihai, I., 2016. On surfaces in the isotropic 4‐space, Math. Commun. to appear. Aydin, M.E., Ogrenmis A.O., 2016. Homothetical and translation surfaces with constant curvature in the isotropic space, BSG proceedings, 23, 1‐10.
  • Baba‐Hamed, C.H., Bekkar, M., 2009. Helicoidal surfaces in the three‐dimensional Lorentz‐Minkowski space satisfying , i i i  r   r Int. J. Contemp. Math. Sciences 4(7), 311‐327.
  • Baikoussis, C., Koufogioros, T., 1998. Helicoidal surface with prescribed mean or Gauss curvature, J. Geom. 63, 25‐29.
  • Beneki, Ch.C., Kaimakamis, G., Papantoniou, B.J., 2002. Helicoidal surface in three dimensional Minkowski space, J. Math. Anal. Appl. 275, 586‐614.
  • Chen, B.‐Y., Decu, S., Verstraelen, L., 2014. Notes on isotropic geometry of production models, Kragujevac J. Math. 37(2), 217‐‐220.
  • Choi, M., Yoon, D.W., 2015. Helicoidal surfaces of the third fundamental form in Minkowski 3‐space, Bull. Korean Math. Soc. 52(5), 1569‐‐1578.
  • Choi, M., Kim, Y.H., Liu, H., Yoon, D.W., 2010. Helicoidal surfaces and their Gauss map in Minkowski 3‐space, Bull. Korean Math. Soc. 47(4), 859‐‐881.
  • Decu, S., Verstraelen, L., 2013. A note on the isotropical geometry of production surfaces, Kragujevac J. Math. 38(1), 23‐‐33.
  • Delaunay, G., 1841. Sur la surface de revolution dont la courbure moyenne est constante, J. Math. Pures Appl. Series 6(1), 309‐320.
  • Divjak, B., Milin Sipus, Z., 2008. Some special surfaces in the pseudo‐Galilean space, Acta Math. Hungar., 118(3), 209‐226.
  • Do Carmo, M.P., Dajczer, M., 1982. Helicoidal surfaces with constant mean curvature, Tohoku Math. J. 34, 425‐435.
  • Do Carmo, M.P., 1976. Differential geometry of curves and surfaces, Prentice Hall: Englewood Cliffs, NJ. Erjavec, Z., Divjak, B., Horvat, D., 2011. The general solutions of Frenet's system in the equiform geometry of the Galilean, pseudo‐Galilean, simple isotropic and double isotropic space, Int. Math. Forum 6(17), 837‐856.
  • Gray, A., 2005. Modern differential geometry of curves and surfaces with mathematica. CRC Press LLC. Ji, F., Hou, Z.H., 2005. A kind of helicoidal surfaces in 3‐ dimensional Minkowski space, J. Math. Anal. Appl. 275, 632‐643.
  • Hou, Z.H., Ji, F., 2007. Helicoidal surfaces with H 2  K in Minkowski 3‐space, J. Math. Anal. Appl. 325, 101‐113.
  • Kamenarovic, I., 1982. On line complexes in the isotropic space , ) 1(3 I Glasnik Matematicki 17(37), 321‐329.
  • Kamenarovic, I., 1994. Associated curves on ruled surfaces in the isotropic space , ) 1(3 I Glasnik Matematicki 29(49), 363‐370.
  • Kenmotsu, K., Surfaces of revolution with prescribed mean curvature, Tohoku Math. J. 32, 147‐153.
  • Kim, Y.H., Turgay, N.C., 2013. Classifications of helicoidal surfaces with  1 L pointwise 1‐type Gauss map, Bull. Korean Math. Soc. 50(4), 1345‐1356.
  • Kim, Y.H., Koh, S.‐E., Shin, H., Yang, S.‐D., 2012. Helicoidal minimal surfaces in H2 R, B. Aust. Math Soc. 86(1), 135‐149.
  • Lopez, R., Demir, E., 2014. Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature, Cent. Eur. J. Math. 12(9), 1349‐1361.
  • Milin Sipus, Z., 2014. Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hung. 68, 160‐‐175
  • Milin Sipus, Z., Divjak, B., 1998. Curves in n‐dimensional k‐isotropic space, Glasnik Matematicki 33(53), 267‐ 286.
  • Palman, D., 1979. Spharische quartiken auf dem torus im einfach isotropen raum, Glasnik Matematicki 14(34), 345‐357.
  • Pavkovic, B., 1980. An interpretation of the relative curvatures for surfaces in the isotropic space, Glasnik Matematicki 15(35) (1980), 149‐152.
  • Sachs, H., 1990a. Ebene Isotrope Geometrie, Vieweg‐ Verlag, Braunschweig, Wiesbaden. Sachs, H., 1990b. Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig. Sachs, H., 1978. Zur Geometrie der Hyperspharen in ndimensionalen einfach isotropen Raum, Jour. f. d. reine u. angew. Math. 298, 199‐217.
  • Senoussi, B., Bekkar, M., 2015. Helicoidal surfaces with J r  Ar in 3‐dimensional Euclidean space, Stud. Univ. Babes‐Bolyai Math. 60(3), 437‐448. Strubecker, K., 1942. Differentialgeometrie des isotropen Raumes III, Flachentheorie, Math. Zeitsch. 48, 369‐427.
Year 2016, Volume: 16 Issue: 2, 239 - 246, 30.04.2016

Abstract

References

  • Arvanitoyeorgos, A., Kaimakamis, G., 2010. Helicoidal surfaces in the Heisenberg 3‐space. JP Geometry and Topology, 10(1), 1‐10.
  • Aydin, M.E., 2015. A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom., DOI 10.1007/s00022‐015‐0292‐0.
  • Aydin, M.E., Mihai, I., 2016. On surfaces in the isotropic 4‐space, Math. Commun. to appear. Aydin, M.E., Ogrenmis A.O., 2016. Homothetical and translation surfaces with constant curvature in the isotropic space, BSG proceedings, 23, 1‐10.
  • Baba‐Hamed, C.H., Bekkar, M., 2009. Helicoidal surfaces in the three‐dimensional Lorentz‐Minkowski space satisfying , i i i  r   r Int. J. Contemp. Math. Sciences 4(7), 311‐327.
  • Baikoussis, C., Koufogioros, T., 1998. Helicoidal surface with prescribed mean or Gauss curvature, J. Geom. 63, 25‐29.
  • Beneki, Ch.C., Kaimakamis, G., Papantoniou, B.J., 2002. Helicoidal surface in three dimensional Minkowski space, J. Math. Anal. Appl. 275, 586‐614.
  • Chen, B.‐Y., Decu, S., Verstraelen, L., 2014. Notes on isotropic geometry of production models, Kragujevac J. Math. 37(2), 217‐‐220.
  • Choi, M., Yoon, D.W., 2015. Helicoidal surfaces of the third fundamental form in Minkowski 3‐space, Bull. Korean Math. Soc. 52(5), 1569‐‐1578.
  • Choi, M., Kim, Y.H., Liu, H., Yoon, D.W., 2010. Helicoidal surfaces and their Gauss map in Minkowski 3‐space, Bull. Korean Math. Soc. 47(4), 859‐‐881.
  • Decu, S., Verstraelen, L., 2013. A note on the isotropical geometry of production surfaces, Kragujevac J. Math. 38(1), 23‐‐33.
  • Delaunay, G., 1841. Sur la surface de revolution dont la courbure moyenne est constante, J. Math. Pures Appl. Series 6(1), 309‐320.
  • Divjak, B., Milin Sipus, Z., 2008. Some special surfaces in the pseudo‐Galilean space, Acta Math. Hungar., 118(3), 209‐226.
  • Do Carmo, M.P., Dajczer, M., 1982. Helicoidal surfaces with constant mean curvature, Tohoku Math. J. 34, 425‐435.
  • Do Carmo, M.P., 1976. Differential geometry of curves and surfaces, Prentice Hall: Englewood Cliffs, NJ. Erjavec, Z., Divjak, B., Horvat, D., 2011. The general solutions of Frenet's system in the equiform geometry of the Galilean, pseudo‐Galilean, simple isotropic and double isotropic space, Int. Math. Forum 6(17), 837‐856.
  • Gray, A., 2005. Modern differential geometry of curves and surfaces with mathematica. CRC Press LLC. Ji, F., Hou, Z.H., 2005. A kind of helicoidal surfaces in 3‐ dimensional Minkowski space, J. Math. Anal. Appl. 275, 632‐643.
  • Hou, Z.H., Ji, F., 2007. Helicoidal surfaces with H 2  K in Minkowski 3‐space, J. Math. Anal. Appl. 325, 101‐113.
  • Kamenarovic, I., 1982. On line complexes in the isotropic space , ) 1(3 I Glasnik Matematicki 17(37), 321‐329.
  • Kamenarovic, I., 1994. Associated curves on ruled surfaces in the isotropic space , ) 1(3 I Glasnik Matematicki 29(49), 363‐370.
  • Kenmotsu, K., Surfaces of revolution with prescribed mean curvature, Tohoku Math. J. 32, 147‐153.
  • Kim, Y.H., Turgay, N.C., 2013. Classifications of helicoidal surfaces with  1 L pointwise 1‐type Gauss map, Bull. Korean Math. Soc. 50(4), 1345‐1356.
  • Kim, Y.H., Koh, S.‐E., Shin, H., Yang, S.‐D., 2012. Helicoidal minimal surfaces in H2 R, B. Aust. Math Soc. 86(1), 135‐149.
  • Lopez, R., Demir, E., 2014. Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature, Cent. Eur. J. Math. 12(9), 1349‐1361.
  • Milin Sipus, Z., 2014. Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hung. 68, 160‐‐175
  • Milin Sipus, Z., Divjak, B., 1998. Curves in n‐dimensional k‐isotropic space, Glasnik Matematicki 33(53), 267‐ 286.
  • Palman, D., 1979. Spharische quartiken auf dem torus im einfach isotropen raum, Glasnik Matematicki 14(34), 345‐357.
  • Pavkovic, B., 1980. An interpretation of the relative curvatures for surfaces in the isotropic space, Glasnik Matematicki 15(35) (1980), 149‐152.
  • Sachs, H., 1990a. Ebene Isotrope Geometrie, Vieweg‐ Verlag, Braunschweig, Wiesbaden. Sachs, H., 1990b. Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig. Sachs, H., 1978. Zur Geometrie der Hyperspharen in ndimensionalen einfach isotropen Raum, Jour. f. d. reine u. angew. Math. 298, 199‐217.
  • Senoussi, B., Bekkar, M., 2015. Helicoidal surfaces with J r  Ar in 3‐dimensional Euclidean space, Stud. Univ. Babes‐Bolyai Math. 60(3), 437‐448. Strubecker, K., 1942. Differentialgeometrie des isotropen Raumes III, Flachentheorie, Math. Zeitsch. 48, 369‐427.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Muhittin Evren Aydın This is me

Publication Date April 30, 2016
Submission Date March 28, 2016
Published in Issue Year 2016 Volume: 16 Issue: 2

Cite

APA Aydın, M. E. (2016). İzotropik 3‐Uzayda Yüzeyler Üzerine Sınıflandırma Sonuçları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 16(2), 239-246.
AMA Aydın ME. İzotropik 3‐Uzayda Yüzeyler Üzerine Sınıflandırma Sonuçları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2016;16(2):239-246.
Chicago Aydın, Muhittin Evren. “İzotropik 3‐Uzayda Yüzeyler Üzerine Sınıflandırma Sonuçları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16, no. 2 (April 2016): 239-46.
EndNote Aydın ME (April 1, 2016) İzotropik 3‐Uzayda Yüzeyler Üzerine Sınıflandırma Sonuçları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16 2 239–246.
IEEE M. E. Aydın, “İzotropik 3‐Uzayda Yüzeyler Üzerine Sınıflandırma Sonuçları”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 16, no. 2, pp. 239–246, 2016.
ISNAD Aydın, Muhittin Evren. “İzotropik 3‐Uzayda Yüzeyler Üzerine Sınıflandırma Sonuçları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16/2 (April 2016), 239-246.
JAMA Aydın ME. İzotropik 3‐Uzayda Yüzeyler Üzerine Sınıflandırma Sonuçları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16:239–246.
MLA Aydın, Muhittin Evren. “İzotropik 3‐Uzayda Yüzeyler Üzerine Sınıflandırma Sonuçları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 16, no. 2, 2016, pp. 239-46.
Vancouver Aydın ME. İzotropik 3‐Uzayda Yüzeyler Üzerine Sınıflandırma Sonuçları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16(2):239-46.