Research Article
BibTex RIS Cite

Fren Süspansiyon Test Cihazı Tasarımı ve İmalatı

Year 2016, Volume: 16 Issue: 2, 454 - 460, 30.04.2016

Abstract

Bu çalışmada taşıtların farklı yol şartlarındaki fren‐süspansiyon testlerinin laboratuvar ortamında
yapılmasını sağlayacak bir taşıt test cihazı tasarlanıp imal edilmiştir. Literatürde taşıt testleri konusunda
önemli çalışmaların bulunduğu ancak özellikle yol testlerinin maliyetinin yüksek olması ve deney
sonuçlarında oluşacak sapmanın büyüklüğü göz önüne alındığında istenilen hassasiyetin elde
edilemediği görülmektedir. Tasarlanan fren‐süspansiyon test cihazı ile yol şartları laboratuvar ortamında
oluşturularak standart testlerin daha hassas bir şekilde yapılması sağlanmıştır. Tasarım ve İmalat
işlemleri gerçekleştirilen test cihazının optimizasyon testleri yapılmıştır.

References

  • Albatlan S. A. A., (2015).” Effect of Hydraulic Brake Pıpe Inner Diameter on Vehıcle Dynamics”, International Journal of Automotive Technology, .Vol. 16, .No.2, pp. 231‐237
  • Belhocine A. and Bouchetara M., (2012).”Thermal behavior of full and ventilated disc brakes of vehicles”, Journal of Mechanical Science and Technology, Vol. 26 No. 11, pp. 3643‐3652
  • Chung W. S., Jung S. P. and Park T. W., (2010).”Numerical analysis method to estimate thermal deformation of a ventilated disc for automotives”, Journal of Mechanical Science and Technology, Vol. 24, No. 11, pp. 2189‐2195
  • Gemalmayan, N. (1984) “Sürtünme Malzemelerinin Özelliklerinin Deneysel İncelenmesi.”, Gazi University, Phd Thesis.
  • Hamersma H. A. and Els P. S., (2014)”Improving the braking performance of a vehicle with ABS and a semi‐active suspension system on a rough road”, Journal of Terramechanics, Vol. 56, pp. 91‐101
  • Hwan, P. J. Oh, C. J. Rae, K. H., (2010)“Friction characteristics of brake pads with aramid fiber and acrylic fiber.” Ind. Lubr. Tribol. 62:91–8.
  • Jang, H. Jin, K. S., (2000) “The effects of antimony trisulfide (Sb2S3) and zirconium silicate (ZrSiO4) in the automotive brake friction material on friction characteristics.” Wear 239:229–36.
  • Kchaou, M. Sellami, A. Elleuch, R. (2013) “Singh H. Friction characteristics of a brake friction material under different braking conditions.”, Mater Des 52:533–40.
  • Kumar, M, Bijwe J. (2010) “Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient– temperature sensitivity in brake materials”. Wear, 269:838–46.
  • Mutlu, F. Eldogan, I. Findik, O., (2006) “Tribological properties of some phenolic composites suggested for automotive brakes.”, Tribol Int 39:317–25.
  • Österle, W. Griepentrog, M. Gross, Th. Urban, I., (2001) “Chemical and microstructural changes induced by friction and wear of brakes.”, Wear 251:1469–76.
  • Öztürk, B. Öztürk, S. Ö. Adigüzel, A. A. (2013), “Effect of type and relative amount of solid lubricants and abrasives on the tribological properties of brake friction materials.”, Tribol Trans 56:428–41.
  • Poulios, K. Svendsen, G., Hiller, J. Klit, P. (2013) “Coefficient of Friction Measurements for Thermoplastics and Fibre Composites Under Low Sliding Velocity and High Pressure.” Tribol. Lett. 51: 191‐198.
  • Rakesh, K. K., Bhabani, S. K. (2014) “Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials.”, Mater Des 56:368–78.
  • Reinsch, E. W. (1970) “Sintered Metal Brake Linings For Automotive Applications.”, Delcooraine division, General Motors corp. Dayton, s. 2, 9‐21.
  • Sellami, A. Kchaou, M. Elleuch, R. Cristol, A. L. Desplanques, Y., (2014) “Study of the interaction between microstructure, mechanical and tribo‐performance of a commercial brake lining material.” Materials and Design, s. 59, 84 ‐ 93.
  • Straffelini, G. Maines, L., (2013) “The relationship between wear of semimetalic friction materials and pearlitic cast iron in dry sliding.”, Wear, s. 307, 75 ‐ 80.
  • Wu, Y. Jin, H. Li, Y. Ji, Z. Hou, S., (2014) “Simulation of Temperature Distribution in Disk Brake Considering a Real Brake Pad Wear” Tribol. Lett. 56: 205–213
  • Xiao, G. Zhu, Z., (2010) “Friction materials development by using DOE/RSM and artificial neural network.” Tribology International, s. 43: 218 ‐ 227.
  • Yang I. J., Choi K. and Huh K., (2012). “Development Of An Electrıc Booster System Usıng Slıdıng Mode Control For Improved Brakıng Performance”, International Journal of Automotive Technology, Vol. 13, No.6, pp. 1005–1011
Year 2016, Volume: 16 Issue: 2, 454 - 460, 30.04.2016

Abstract

References

  • Albatlan S. A. A., (2015).” Effect of Hydraulic Brake Pıpe Inner Diameter on Vehıcle Dynamics”, International Journal of Automotive Technology, .Vol. 16, .No.2, pp. 231‐237
  • Belhocine A. and Bouchetara M., (2012).”Thermal behavior of full and ventilated disc brakes of vehicles”, Journal of Mechanical Science and Technology, Vol. 26 No. 11, pp. 3643‐3652
  • Chung W. S., Jung S. P. and Park T. W., (2010).”Numerical analysis method to estimate thermal deformation of a ventilated disc for automotives”, Journal of Mechanical Science and Technology, Vol. 24, No. 11, pp. 2189‐2195
  • Gemalmayan, N. (1984) “Sürtünme Malzemelerinin Özelliklerinin Deneysel İncelenmesi.”, Gazi University, Phd Thesis.
  • Hamersma H. A. and Els P. S., (2014)”Improving the braking performance of a vehicle with ABS and a semi‐active suspension system on a rough road”, Journal of Terramechanics, Vol. 56, pp. 91‐101
  • Hwan, P. J. Oh, C. J. Rae, K. H., (2010)“Friction characteristics of brake pads with aramid fiber and acrylic fiber.” Ind. Lubr. Tribol. 62:91–8.
  • Jang, H. Jin, K. S., (2000) “The effects of antimony trisulfide (Sb2S3) and zirconium silicate (ZrSiO4) in the automotive brake friction material on friction characteristics.” Wear 239:229–36.
  • Kchaou, M. Sellami, A. Elleuch, R. (2013) “Singh H. Friction characteristics of a brake friction material under different braking conditions.”, Mater Des 52:533–40.
  • Kumar, M, Bijwe J. (2010) “Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient– temperature sensitivity in brake materials”. Wear, 269:838–46.
  • Mutlu, F. Eldogan, I. Findik, O., (2006) “Tribological properties of some phenolic composites suggested for automotive brakes.”, Tribol Int 39:317–25.
  • Österle, W. Griepentrog, M. Gross, Th. Urban, I., (2001) “Chemical and microstructural changes induced by friction and wear of brakes.”, Wear 251:1469–76.
  • Öztürk, B. Öztürk, S. Ö. Adigüzel, A. A. (2013), “Effect of type and relative amount of solid lubricants and abrasives on the tribological properties of brake friction materials.”, Tribol Trans 56:428–41.
  • Poulios, K. Svendsen, G., Hiller, J. Klit, P. (2013) “Coefficient of Friction Measurements for Thermoplastics and Fibre Composites Under Low Sliding Velocity and High Pressure.” Tribol. Lett. 51: 191‐198.
  • Rakesh, K. K., Bhabani, S. K. (2014) “Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials.”, Mater Des 56:368–78.
  • Reinsch, E. W. (1970) “Sintered Metal Brake Linings For Automotive Applications.”, Delcooraine division, General Motors corp. Dayton, s. 2, 9‐21.
  • Sellami, A. Kchaou, M. Elleuch, R. Cristol, A. L. Desplanques, Y., (2014) “Study of the interaction between microstructure, mechanical and tribo‐performance of a commercial brake lining material.” Materials and Design, s. 59, 84 ‐ 93.
  • Straffelini, G. Maines, L., (2013) “The relationship between wear of semimetalic friction materials and pearlitic cast iron in dry sliding.”, Wear, s. 307, 75 ‐ 80.
  • Wu, Y. Jin, H. Li, Y. Ji, Z. Hou, S., (2014) “Simulation of Temperature Distribution in Disk Brake Considering a Real Brake Pad Wear” Tribol. Lett. 56: 205–213
  • Xiao, G. Zhu, Z., (2010) “Friction materials development by using DOE/RSM and artificial neural network.” Tribology International, s. 43: 218 ‐ 227.
  • Yang I. J., Choi K. and Huh K., (2012). “Development Of An Electrıc Booster System Usıng Slıdıng Mode Control For Improved Brakıng Performance”, International Journal of Automotive Technology, Vol. 13, No.6, pp. 1005–1011
There are 20 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hüseyin Bayrakçeken This is me

Faruk Emre Aysal

İbrahim Mutlu This is me

Publication Date April 30, 2016
Submission Date April 25, 2016
Published in Issue Year 2016 Volume: 16 Issue: 2

Cite

APA Bayrakçeken, H., Aysal, F. E., & Mutlu, İ. (2016). Fren Süspansiyon Test Cihazı Tasarımı ve İmalatı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 16(2), 454-460.
AMA Bayrakçeken H, Aysal FE, Mutlu İ. Fren Süspansiyon Test Cihazı Tasarımı ve İmalatı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2016;16(2):454-460.
Chicago Bayrakçeken, Hüseyin, Faruk Emre Aysal, and İbrahim Mutlu. “Fren Süspansiyon Test Cihazı Tasarımı Ve İmalatı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16, no. 2 (April 2016): 454-60.
EndNote Bayrakçeken H, Aysal FE, Mutlu İ (April 1, 2016) Fren Süspansiyon Test Cihazı Tasarımı ve İmalatı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16 2 454–460.
IEEE H. Bayrakçeken, F. E. Aysal, and İ. Mutlu, “Fren Süspansiyon Test Cihazı Tasarımı ve İmalatı”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 16, no. 2, pp. 454–460, 2016.
ISNAD Bayrakçeken, Hüseyin et al. “Fren Süspansiyon Test Cihazı Tasarımı Ve İmalatı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16/2 (April 2016), 454-460.
JAMA Bayrakçeken H, Aysal FE, Mutlu İ. Fren Süspansiyon Test Cihazı Tasarımı ve İmalatı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16:454–460.
MLA Bayrakçeken, Hüseyin et al. “Fren Süspansiyon Test Cihazı Tasarımı Ve İmalatı”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 16, no. 2, 2016, pp. 454-60.
Vancouver Bayrakçeken H, Aysal FE, Mutlu İ. Fren Süspansiyon Test Cihazı Tasarımı ve İmalatı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16(2):454-60.