Research Article
BibTex RIS Cite

Uyumsuzluk Giderici Kullanımının Mikrokristalen Selüloz ve Nanokil Esaslı Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri Üzerine Etkileri

Year 2016, Volume: 16 Issue: 2, 474 - 483, 30.04.2016

Abstract

Nanokil ve mikrokristalen selülozun (MCC) polimer matrisi içersinde etkili bir şekilde dağılımını sağlamak
için maleik anhidrit graftlanmış polietilen (MAPE) uyumsuzluk giderici olarak kullanılmıştır. PE‐g‐MA
ilaveli MCC ve nanokil esaslı yüksek yoğunluklu polietilen (YYPE) kompozitler tek vidalı ekstruder,
genişlemeli akışlı karıştırıcı ve masterbatch yöntemi ile üretilmişlerdir. MCC ve nanokil ilaveli yüksek
yoğunluklu polietilen (YYPE) kompozitlerin çekme, eğilme ve darbe dayanımı özellikleri belirlenmiştir.
MCC ilaveli yüksek yoğunluklu polietilen (YYPE) kompozitlerle karşılaştırıldığında, nanokil ilaveli yüksek
yoğunluklu polietilen kompozitlere uyumsuzluk gidericinin ilavesi ile daha yüksek çekme ve eğilme
direnci değerleri bulunmuştur. En yüksek çekme ve eğilme direnci değerleri %4 PE‐g‐MA ilaveli MCC
esaslı YYPE kompozitinden elde edilmiştir.

References

  • ASTM D 256‐10, 2010. Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastic. ASTM, West Conshohocken, Pa.
  • ASTM D 638‐10, 2010. Standard Test Method for Tensile Properties of Plastics. ASTM, West Conshohocken, Pa.
  • ASTM D 790‐10, 2010. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Test Method 1, Procedure A. ASTM, West Conshohocken, Pa.
  • Balasuriya, P., Ye, L. and Mai, Y.W.,2001. Mechanical properties of wood flakepolyethylene composites. Part I: Effects of processing methods and matrix melt flow behaviour. Composites Part A: Applied Science and Manufacturing,32(5), 619‐629.
  • Botros, M., 2003. Development of New Generation Coupling Agents for Wood‐plastic Composites. Equistar Chemicals, LP, New Orleans, LA.
  • Bulut, Y. and Erdoğan, Ü.H.,2011. Selüloz esaslı doğal liflerin kompozit üretiminde takviye materyali olarak kullanımı. The Journal of Textiles and Engineer, 82, 26‐35.
  • Chan, M., Lau, K., Wong, T.T. and Cardona, F.,2011. Interfacial bonding characteristic of nanoclay/polymer composites. Applied Surface Science, 258, 860‐864, (2011).
  • Doan, T.T.L., Gao, S.L. and Mader, E.,2006. Jute/polypropylene composites I. Effect of matrix modification. Composites Science and Technology, 66(7‐8), 952‐963.
  • Donmez Cavdar, A., 2011. Farklı lignoselülozik ve termoplastik maddelerle üretilen odun‐plastik kompozitlerin özelliklerinin incelenmesi. Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, 311.
  • Donmez Çavdar, A., Kalaycıoğlu, H., Mengeloğlu, F. and Casur, E.,2013. MDF zımpara tozu dolgulu termoplastik kompozitlerin fiziksel ve mekanik özellikleri. 7th International Advanced Technologies Symposium, IATS’2013, 30 October‐1 November 2013, İstanbul, Turkey. Faruk, O. and Matuana, L.M., 2008. Reinforcement of rigid PVC/wood‐flour composites with multiwalled carbon nanotubes. Vinyl&Additive Tecnology Journal, 14,60‐64.
  • Gaikwad, P. and Mahanwar, P., 2015. Effects of coupling agent on the properties of henequen microfiber (NF) filled high denstiy polyetyhlene (HDPE) composites. International Scholarly and Scientific Research&Innovation, 9(5),475‐479.
  • Haafiz, M.K.M., Hassan, A., Zakaria, Z., Inuwa, I.M., Islam, M.S. and Jawaid, M.,2013. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 98,139‐145.
  • Han, Y.H., Han, S.O., Cho, D. and H.Kim, 2008. Dynamic mechanical properties on natural fiber/polymerbiocomposites: The effect of fiber treatment with electron beam. Journal of Macromolecular Research, 16(3), 253‐260.
  • Ifuku, S. and Yano, H., 2015. Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite. International Journal of Biological Macromolecules, 74,428‐432.
  • Jonoobi, M., Harun, J., Mathew, A.P. and Oksman, K.,2010. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid(pla) prepared by twin screw extrusion. Composite Science Technology, 70(12), 1742‐1747.
  • Kiziltas, A., Gardner, D.J., Han, Y. and Yang, HS., 2010. Determining the mechanical properties of microcrystalline cellulose (MCC)‐filled PETPTT blend composites. Wood and Fiber Science, 42(2),165‐176.
  • Kiziltaş, A., Kızıltaş, E.E., Boran, S. and Gardner, D.J.,2013. Micro‐and nanocellulose for the automotive applications, micro and nanocellulose for the automotive applications. SPE Automotive Composites Conferences&Exhibition (ACCE), 11‐13 September.
  • Li, J., Ton‐That, M.T., Leelapornpisit, W. and Utracki, L.A., 2007. Melt compounding of polypropylene‐ based clay nanocomposites. Polymer Engineering&Science, 47(9), 1447‐ 1458.
  • Liu, T., Lei, Y., Wang, Q., Lee, S. and Wu, Q., 2013. Effect of fiber type and coupling treatment on properties of high‐density polyethylene/natural fiber composites. Bioresources, 8(3), 4619‐ 4632.
  • Lu, J.Z., Wu, Q. and Negulescu, I.I.,2005. Woodfiber/ high‐density‐polyethylene composites: Coupling agent performance. Joience, 96,93‐ 102.
  • Maiottti, N., Wang, X‐M., Rodrigue, D. and Stevanovic, T.,2014. Combination of esterified kraft lignin and MAPE as coupling agent for bark/HDPE composites. Journal of Materails Science Research, 3(2), 8‐22.
  • Mathew, A.P., Oksman, K. and Sain, M.,2005. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97,2014‐2025.
  • Mohanty, A.K., Misra, M. and Hinrichsen, G., 2000. Biofibres, biodegradable polymers and biocomposites:An overview. Macromolecular Materials and Engineering, 276/277,1‐24.
  • Özen, E., Kızıltaş, A., Kızıltaş, E.E. and Gardner, D.J.,2013. Natural fiber blend‐nylon 6 composites.Polymer Composites, 34(4),544‐553.
  • Park, J.H. and Jana, S.C.,2003. The relationship between nano‐ and micro‐structures and mechanical properties in PMMA‐epoxynanoclay composites. Polymer, 44, 2091–2100.
  • Qiu, W.L., Endo, T. and Hirotsu, T.,2006. Structure and properties of composites of highly crystalline cellulose with polypropylene: Effects of polypropylene molecular weight. European Polymer Journal, 42,1059‐1068.
  • San, P.K., Nee, L.A. and Meng, H.C., 2008. Physical and bending properties of ınjection moulded wood plastic composites boards. ARPN Journal of Engineering and Applied Sciences, 3(5),13‐19.
  • Sanadi, A.R, Caulfield, D.F, Jacobson, R.E. and Rowell R.M., 1995. Renewable agricultural fibers as reinforcing fillers in plastics: Mechanical properties of kenaf fiberpolypropylene composites.Industrial Engineering Chemistry Research, 34(5), 1889‐ 1896.
  • Spoljaric, S., Genovese, A. and Shanks, R.A., 2009. Polypropylene‐microcrystalline cellulose composites with enhanced compatability and properties. Composites Part A: Applied Science and Manufacturing, 40,791‐799.
  • Sun, X., Lu, C., Liu, Y., Zhang, W. and Zhang, X.,2014.Melt‐Processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydrate Polymers, 101,642‐649.
  • Şen, F., Palancıoğlu, H. and Aldaş, K.,2010. Polimerik nanokompozitler ve kullanım alanları. Electronic Journal of Machine Technologies, 7(1), 11‐18.
  • Tanoue, S. and Iemoto, Y., 2003. Numerical simulation of the flow in an extensional flow mixer: Effect of fluid elasticity on the flow. Polymer. Engineering&.Science, 43(1), 254‐266.
  • Tokihisa, M., Yakemeto, K., Sakai, T., Utracki, L.A., Sepehr, M. and Simard, L.Y., 2006. Extensional flow mixer for polymer nanocomposites. Polymer Engineering&Science, 46(8),1040‐1050.
  • Utracki, L.A.,1998. Mixing in extensional flow. 14th Annual Meeting Polymer Processing Society,Yokohama, Japan, June 8‐12.
  • Zulkifli, N.I., Samat, N., Anuar, H. and Zainuddin, N., 2015. Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Material&Design, 69,114‐ 123.
Year 2016, Volume: 16 Issue: 2, 474 - 483, 30.04.2016

Abstract

References

  • ASTM D 256‐10, 2010. Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastic. ASTM, West Conshohocken, Pa.
  • ASTM D 638‐10, 2010. Standard Test Method for Tensile Properties of Plastics. ASTM, West Conshohocken, Pa.
  • ASTM D 790‐10, 2010. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Test Method 1, Procedure A. ASTM, West Conshohocken, Pa.
  • Balasuriya, P., Ye, L. and Mai, Y.W.,2001. Mechanical properties of wood flakepolyethylene composites. Part I: Effects of processing methods and matrix melt flow behaviour. Composites Part A: Applied Science and Manufacturing,32(5), 619‐629.
  • Botros, M., 2003. Development of New Generation Coupling Agents for Wood‐plastic Composites. Equistar Chemicals, LP, New Orleans, LA.
  • Bulut, Y. and Erdoğan, Ü.H.,2011. Selüloz esaslı doğal liflerin kompozit üretiminde takviye materyali olarak kullanımı. The Journal of Textiles and Engineer, 82, 26‐35.
  • Chan, M., Lau, K., Wong, T.T. and Cardona, F.,2011. Interfacial bonding characteristic of nanoclay/polymer composites. Applied Surface Science, 258, 860‐864, (2011).
  • Doan, T.T.L., Gao, S.L. and Mader, E.,2006. Jute/polypropylene composites I. Effect of matrix modification. Composites Science and Technology, 66(7‐8), 952‐963.
  • Donmez Cavdar, A., 2011. Farklı lignoselülozik ve termoplastik maddelerle üretilen odun‐plastik kompozitlerin özelliklerinin incelenmesi. Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, 311.
  • Donmez Çavdar, A., Kalaycıoğlu, H., Mengeloğlu, F. and Casur, E.,2013. MDF zımpara tozu dolgulu termoplastik kompozitlerin fiziksel ve mekanik özellikleri. 7th International Advanced Technologies Symposium, IATS’2013, 30 October‐1 November 2013, İstanbul, Turkey. Faruk, O. and Matuana, L.M., 2008. Reinforcement of rigid PVC/wood‐flour composites with multiwalled carbon nanotubes. Vinyl&Additive Tecnology Journal, 14,60‐64.
  • Gaikwad, P. and Mahanwar, P., 2015. Effects of coupling agent on the properties of henequen microfiber (NF) filled high denstiy polyetyhlene (HDPE) composites. International Scholarly and Scientific Research&Innovation, 9(5),475‐479.
  • Haafiz, M.K.M., Hassan, A., Zakaria, Z., Inuwa, I.M., Islam, M.S. and Jawaid, M.,2013. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 98,139‐145.
  • Han, Y.H., Han, S.O., Cho, D. and H.Kim, 2008. Dynamic mechanical properties on natural fiber/polymerbiocomposites: The effect of fiber treatment with electron beam. Journal of Macromolecular Research, 16(3), 253‐260.
  • Ifuku, S. and Yano, H., 2015. Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite. International Journal of Biological Macromolecules, 74,428‐432.
  • Jonoobi, M., Harun, J., Mathew, A.P. and Oksman, K.,2010. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid(pla) prepared by twin screw extrusion. Composite Science Technology, 70(12), 1742‐1747.
  • Kiziltas, A., Gardner, D.J., Han, Y. and Yang, HS., 2010. Determining the mechanical properties of microcrystalline cellulose (MCC)‐filled PETPTT blend composites. Wood and Fiber Science, 42(2),165‐176.
  • Kiziltaş, A., Kızıltaş, E.E., Boran, S. and Gardner, D.J.,2013. Micro‐and nanocellulose for the automotive applications, micro and nanocellulose for the automotive applications. SPE Automotive Composites Conferences&Exhibition (ACCE), 11‐13 September.
  • Li, J., Ton‐That, M.T., Leelapornpisit, W. and Utracki, L.A., 2007. Melt compounding of polypropylene‐ based clay nanocomposites. Polymer Engineering&Science, 47(9), 1447‐ 1458.
  • Liu, T., Lei, Y., Wang, Q., Lee, S. and Wu, Q., 2013. Effect of fiber type and coupling treatment on properties of high‐density polyethylene/natural fiber composites. Bioresources, 8(3), 4619‐ 4632.
  • Lu, J.Z., Wu, Q. and Negulescu, I.I.,2005. Woodfiber/ high‐density‐polyethylene composites: Coupling agent performance. Joience, 96,93‐ 102.
  • Maiottti, N., Wang, X‐M., Rodrigue, D. and Stevanovic, T.,2014. Combination of esterified kraft lignin and MAPE as coupling agent for bark/HDPE composites. Journal of Materails Science Research, 3(2), 8‐22.
  • Mathew, A.P., Oksman, K. and Sain, M.,2005. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97,2014‐2025.
  • Mohanty, A.K., Misra, M. and Hinrichsen, G., 2000. Biofibres, biodegradable polymers and biocomposites:An overview. Macromolecular Materials and Engineering, 276/277,1‐24.
  • Özen, E., Kızıltaş, A., Kızıltaş, E.E. and Gardner, D.J.,2013. Natural fiber blend‐nylon 6 composites.Polymer Composites, 34(4),544‐553.
  • Park, J.H. and Jana, S.C.,2003. The relationship between nano‐ and micro‐structures and mechanical properties in PMMA‐epoxynanoclay composites. Polymer, 44, 2091–2100.
  • Qiu, W.L., Endo, T. and Hirotsu, T.,2006. Structure and properties of composites of highly crystalline cellulose with polypropylene: Effects of polypropylene molecular weight. European Polymer Journal, 42,1059‐1068.
  • San, P.K., Nee, L.A. and Meng, H.C., 2008. Physical and bending properties of ınjection moulded wood plastic composites boards. ARPN Journal of Engineering and Applied Sciences, 3(5),13‐19.
  • Sanadi, A.R, Caulfield, D.F, Jacobson, R.E. and Rowell R.M., 1995. Renewable agricultural fibers as reinforcing fillers in plastics: Mechanical properties of kenaf fiberpolypropylene composites.Industrial Engineering Chemistry Research, 34(5), 1889‐ 1896.
  • Spoljaric, S., Genovese, A. and Shanks, R.A., 2009. Polypropylene‐microcrystalline cellulose composites with enhanced compatability and properties. Composites Part A: Applied Science and Manufacturing, 40,791‐799.
  • Sun, X., Lu, C., Liu, Y., Zhang, W. and Zhang, X.,2014.Melt‐Processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydrate Polymers, 101,642‐649.
  • Şen, F., Palancıoğlu, H. and Aldaş, K.,2010. Polimerik nanokompozitler ve kullanım alanları. Electronic Journal of Machine Technologies, 7(1), 11‐18.
  • Tanoue, S. and Iemoto, Y., 2003. Numerical simulation of the flow in an extensional flow mixer: Effect of fluid elasticity on the flow. Polymer. Engineering&.Science, 43(1), 254‐266.
  • Tokihisa, M., Yakemeto, K., Sakai, T., Utracki, L.A., Sepehr, M. and Simard, L.Y., 2006. Extensional flow mixer for polymer nanocomposites. Polymer Engineering&Science, 46(8),1040‐1050.
  • Utracki, L.A.,1998. Mixing in extensional flow. 14th Annual Meeting Polymer Processing Society,Yokohama, Japan, June 8‐12.
  • Zulkifli, N.I., Samat, N., Anuar, H. and Zainuddin, N., 2015. Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Material&Design, 69,114‐ 123.
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Sevda Boran

Publication Date April 30, 2016
Submission Date April 19, 2016
Published in Issue Year 2016 Volume: 16 Issue: 2

Cite

APA Boran, S. (2016). Uyumsuzluk Giderici Kullanımının Mikrokristalen Selüloz ve Nanokil Esaslı Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri Üzerine Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 16(2), 474-483.
AMA Boran S. Uyumsuzluk Giderici Kullanımının Mikrokristalen Selüloz ve Nanokil Esaslı Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri Üzerine Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2016;16(2):474-483.
Chicago Boran, Sevda. “Uyumsuzluk Giderici Kullanımının Mikrokristalen Selüloz Ve Nanokil Esaslı Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri Üzerine Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16, no. 2 (April 2016): 474-83.
EndNote Boran S (April 1, 2016) Uyumsuzluk Giderici Kullanımının Mikrokristalen Selüloz ve Nanokil Esaslı Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri Üzerine Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16 2 474–483.
IEEE S. Boran, “Uyumsuzluk Giderici Kullanımının Mikrokristalen Selüloz ve Nanokil Esaslı Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri Üzerine Etkileri”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 16, no. 2, pp. 474–483, 2016.
ISNAD Boran, Sevda. “Uyumsuzluk Giderici Kullanımının Mikrokristalen Selüloz Ve Nanokil Esaslı Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri Üzerine Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 16/2 (April 2016), 474-483.
JAMA Boran S. Uyumsuzluk Giderici Kullanımının Mikrokristalen Selüloz ve Nanokil Esaslı Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri Üzerine Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16:474–483.
MLA Boran, Sevda. “Uyumsuzluk Giderici Kullanımının Mikrokristalen Selüloz Ve Nanokil Esaslı Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri Üzerine Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 16, no. 2, 2016, pp. 474-83.
Vancouver Boran S. Uyumsuzluk Giderici Kullanımının Mikrokristalen Selüloz ve Nanokil Esaslı Yüksek Yoğunluklu Polietilen Kompozitlerin Mekanik Özellikleri Üzerine Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16(2):474-83.